
       

Chapter 11

Markov Chains

11.1 Introduction

Most of our study of probability has dealt with independent trials processes. These
processes are the basis of classical probability theory and much of statistics. We
have discussed two of the principal theorems for these processes: the Law of Large
Numbers and the Central Limit Theorem.

We have seen that when a sequence of chance experiments forms an indepen-
dent trials process, the possible outcomes for each experiment are the same and
occur with the same probability. Further, knowledge of the outcomes of the pre-
vious experiments does not influence our predictions for the outcomes of the next
experiment. The distribution for the outcomes of a single experiment is sufficient
to construct a tree and a tree measure for a sequence of n experiments, and we
can answer any probability question about these experiments by using this tree
measure.

Modern probability theory studies chance processes for which the knowledge
of previous outcomes influences predictions for future experiments. In principle,
when we observe a sequence of chance experiments, all of the past outcomes could
influence our predictions for the next experiment. For example, this should be the
case in predicting a student’s grades on a sequence of exams in a course. But to
allow this much generality would make it very difficult to prove general results.

In 1907, A. A. Markov began the study of an important new type of chance
process. In this process, the outcome of a given experiment can affect the outcome
of the next experiment. This type of process is called a Markov chain.

Specifying a Markov Chain

We describe a Markov chain as follows: We have a set of states, S = {s1, s2, . . . , sr}.
The process starts in one of these states and moves successively from one state to
another. Each move is called a step. If the chain is currently in state si, then
it moves to state sj at the next step with a probability denoted by pij , and this
probability does not depend upon which states the chain was in before the current
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state.
The probabilities pij are called transition probabilities. The process can remain

in the state it is in, and this occurs with probability pii. An initial probability
distribution, defined on S, specifies the starting state. Usually this is done by
specifying a particular state as the starting state.

R. A. Howard1 provides us with a picturesque description of a Markov chain as
a frog jumping on a set of lily pads. The frog starts on one of the pads and then
jumps from lily pad to lily pad with the appropriate transition probabilities.

Example 11.1 According to Kemeny, Snell, and Thompson,2 the Land of Oz is
blessed by many things, but not by good weather. They never have two nice days
in a row. If they have a nice day, they are just as likely to have snow as rain the
next day. If they have snow or rain, they have an even chance of having the same
the next day. If there is change from snow or rain, only half of the time is this a
change to a nice day. With this information we form a Markov chain as follows.
We take as states the kinds of weather R, N, and S. From the above information
we determine the transition probabilities. These are most conveniently represented
in a square array as

P =


R N S

R 1/2 1/4 1/4
N 1/2 0 1/2
S 1/4 1/4 1/2

 .

2

Transition Matrix

The entries in the first row of the matrix P in Example 11.1 represent the proba-
bilities for the various kinds of weather following a rainy day. Similarly, the entries
in the second and third rows represent the probabilities for the various kinds of
weather following nice and snowy days, respectively. Such a square array is called
the matrix of transition probabilities, or the transition matrix .

We consider the question of determining the probability that, given the chain is
in state i today, it will be in state j two days from now. We denote this probability
by p

(2)
ij . In Example 11.1, we see that if it is rainy today then the event that it

is snowy two days from now is the disjoint union of the following three events: 1)
it is rainy tomorrow and snowy two days from now, 2) it is nice tomorrow and
snowy two days from now, and 3) it is snowy tomorrow and snowy two days from
now. The probability of the first of these events is the product of the conditional
probability that it is rainy tomorrow, given that it is rainy today, and the conditional
probability that it is snowy two days from now, given that it is rainy tomorrow.
Using the transition matrix P, we can write this product as p11p13. The other two

1R. A. Howard, Dynamic Probabilistic Systems, vol. 1 (New York: John Wiley and Sons, 1971).
2J. G. Kemeny, J. L. Snell, G. L. Thompson, Introduction to Finite Mathematics, 3rd ed.

(Englewood Cliffs, NJ: Prentice-Hall, 1974).
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events also have probabilities that can be written as products of entries of P. Thus,
we have

p
(2)
13 = p11p13 + p12p23 + p13p33 .

This equation should remind the reader of a dot product of two vectors; we are
dotting the first row of P with the third column of P. This is just what is done
in obtaining the 1, 3-entry of the product of P with itself. In general, if a Markov
chain has r states, then

p
(2)
ij =

r∑
k=1

pikpkj .

The following general theorem is easy to prove by using the above observation and
induction.

Theorem 11.1 Let P be the transition matrix of a Markov chain. The ijth en-
try p

(n)
ij of the matrix Pn gives the probability that the Markov chain, starting in

state si, will be in state sj after n steps.

Proof. The proof of this theorem is left as an exercise (Exercise 17). 2

Example 11.2 (Example 11.1 continued) Consider again the weather in the Land
of Oz. We know that the powers of the transition matrix give us interesting in-
formation about the process as it evolves. We shall be particularly interested in
the state of the chain after a large number of steps. The program MatrixPowers
computes the powers of P.

We have run the program MatrixPowers for the Land of Oz example to com-
pute the successive powers of P from 1 to 6. The results are shown in Table 11.1.
We note that after six days our weather predictions are, to three-decimal-place ac-
curacy, independent of today’s weather. The probabilities for the three types of
weather, R, N, and S, are .4, .2, and .4 no matter where the chain started. This
is an example of a type of Markov chain called a regular Markov chain. For this
type of chain, it is true that long-range predictions are independent of the starting
state. Not all chains are regular, but this is an important class of chains that we
shall study in detail later. 2

We now consider the long-term behavior of a Markov chain when it starts in a
state chosen by a probability distribution on the set of states, which we will call a
probability vector . A probability vector with r components is a row vector whose
entries are non-negative and sum to 1. If u is a probability vector which represents
the initial state of a Markov chain, then we think of the ith component of u as
representing the probability that the chain starts in state si.

With this interpretation of random starting states, it is easy to prove the fol-
lowing theorem.
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P1 =


Rain Nice Snow

Rain .500 .250 .250
Nice .500 .000 .500
Snow .250 .250 .500



P2 =


Rain Nice Snow

Rain .438 .188 .375
Nice .375 .250 .375
Snow .375 .188 .438



P3 =


Rain Nice Snow

Rain .406 .203 .391
Nice .406 .188 .406
Snow .391 .203 .406



P4 =


Rain Nice Snow

Rain .402 .199 .398
Nice .398 .203 .398
Snow .398 .199 .402



P5 =


Rain Nice Snow

Rain .400 .200 .399
Nice .400 .199 .400
Snow .399 .200 .400



P6 =


Rain Nice Snow

Rain .400 .200 .400
Nice .400 .200 .400
Snow .400 .200 .400


Table 11.1: Powers of the Land of Oz transition matrix.
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Theorem 11.2 Let P be the transition matrix of a Markov chain, and let u be the
probability vector which represents the starting distribution. Then the probability
that the chain is in state si after n steps is the ith entry in the vector

u(n) = uPn .

Proof. The proof of this theorem is left as an exercise (Exercise 18). 2

We note that if we want to examine the behavior of the chain under the assump-
tion that it starts in a certain state si, we simply choose u to be the probability
vector with ith entry equal to 1 and all other entries equal to 0.

Example 11.3 In the Land of Oz example (Example 11.1) let the initial probability
vector u equal (1/3, 1/3, 1/3). Then we can calculate the distribution of the states
after three days using Theorem 11.2 and our previous calculation of P3. We obtain

u(3) = uP3 = ( 1/3, 1/3, 1/3 )

 .406 .203 .391
.406 .188 .406
.391 .203 .406


= ( .401, .188, .401 ) .

2

Examples

The following examples of Markov chains will be used throughout the chapter for
exercises.

Example 11.4 The President of the United States tells person A his or her in-
tention to run or not to run in the next election. Then A relays the news to B,
who in turn relays the message to C, and so forth, always to some new person. We
assume that there is a probability a that a person will change the answer from yes
to no when transmitting it to the next person and a probability b that he or she
will change it from no to yes. We choose as states the message, either yes or no.
The transition matrix is then

P =
( yes no

yes 1− a a

no b 1− b

)
.

The initial state represents the President’s choice. 2

Example 11.5 Each time a certain horse runs in a three-horse race, he has proba-
bility 1/2 of winning, 1/4 of coming in second, and 1/4 of coming in third, indepen-
dent of the outcome of any previous race. We have an independent trials process,



        

410 CHAPTER 11. MARKOV CHAINS

but it can also be considered from the point of view of Markov chain theory. The
transition matrix is

P =


W P S

W .5 .25 .25
P .5 .25 .25
S .5 .25 .25

 .

2

Example 11.6 In the Dark Ages, Harvard, Dartmouth, and Yale admitted only
male students. Assume that, at that time, 80 percent of the sons of Harvard men
went to Harvard and the rest went to Yale, 40 percent of the sons of Yale men went
to Yale, and the rest split evenly between Harvard and Dartmouth; and of the sons
of Dartmouth men, 70 percent went to Dartmouth, 20 percent to Harvard, and
10 percent to Yale. We form a Markov chain with transition matrix

P =


H Y D

H .8 .2 0
Y .3 .4 .3
D .2 .1 .7

 .

2

Example 11.7 Modify Example 11.6 by assuming that the son of a Harvard man
always went to Harvard. The transition matrix is now

P =


H Y D

H 1 0 0
Y .3 .4 .3
D .2 .1 .7

 .

2

Example 11.8 (Ehrenfest Model) The following is a special case of a model, called
the Ehrenfest model,3 that has been used to explain diffusion of gases. The general
model will be discussed in detail in Section 11.5. We have two urns that, between
them, contain four balls. At each step, one of the four balls is chosen at random
and moved from the urn that it is in into the other urn. We choose, as states, the
number of balls in the first urn. The transition matrix is then

P =



0 1 2 3 4
0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 1/2 0 1/2 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0

 .

2

3P. and T. Ehrenfest, “Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem,”
Physikalishce Zeitschrift, vol. 8 (1907), pp. 311-314.
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Example 11.9 (Gene Model) The simplest type of inheritance of traits in animals
occurs when a trait is governed by a pair of genes, each of which may be of two types,
say G and g. An individual may have a GG combination or Gg (which is genetically
the same as gG) or gg. Very often the GG and Gg types are indistinguishable in
appearance, and then we say that the G gene dominates the g gene. An individual
is called dominant if he or she has GG genes, recessive if he or she has gg, and
hybrid with a Gg mixture.

In the mating of two animals, the offspring inherits one gene of the pair from
each parent, and the basic assumption of genetics is that these genes are selected at
random, independently of each other. This assumption determines the probability
of occurrence of each type of offspring. The offspring of two purely dominant parents
must be dominant, of two recessive parents must be recessive, and of one dominant
and one recessive parent must be hybrid.

In the mating of a dominant and a hybrid animal, each offspring must get a
G gene from the former and has an equal chance of getting G or g from the latter.
Hence there is an equal probability for getting a dominant or a hybrid offspring.
Again, in the mating of a recessive and a hybrid, there is an even chance for getting
either a recessive or a hybrid. In the mating of two hybrids, the offspring has an
equal chance of getting G or g from each parent. Hence the probabilities are 1/4
for GG, 1/2 for Gg, and 1/4 for gg.

Consider a process of continued matings. We start with an individual of known
genetic character and mate it with a hybrid. We assume that there is at least one
offspring. An offspring is chosen at random and is mated with a hybrid and this
process repeated through a number of generations. The genetic type of the chosen
offspring in successive generations can be represented by a Markov chain. The states
are dominant, hybrid, and recessive, and indicated by GG, Gg, and gg respectively.

The transition probabilities are

P =


GG Gg gg

GG .5 .5 0
Gg .25 .5 .25
gg 0 .5 .5

 .

2

Example 11.10 Modify Example 11.9 as follows: Instead of mating the oldest
offspring with a hybrid, we mate it with a dominant individual. The transition
matrix is

P =


GG Gg gg

GG 1 0 0
Gg .5 .5 0
gg 0 1 0

 .

2
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Example 11.11 We start with two animals of opposite sex, mate them, select two
of their offspring of opposite sex, and mate those, and so forth. To simplify the
example, we will assume that the trait under consideration is independent of sex.

Here a state is determined by a pair of animals. Hence, the states of our process
will be: s1 = (GG,GG), s2 = (GG,Gg), s3 = (GG, gg), s4 = (Gg,Gg), s5 =
(Gg, gg), and s6 = (gg, gg).

We illustrate the calculation of transition probabilities in terms of the state s2.
When the process is in this state, one parent has GG genes, the other Gg. Hence,
the probability of a dominant offspring is 1/2. Then the probability of transition
to s1 (selection of two dominants) is 1/4, transition to s2 is 1/2, and to s4 is 1/4.
The other states are treated the same way. The transition matrix of this chain is:

P1 =



GG,GG GG,Gg GG,gg Gg,Gg Gg,gg gg,gg
GG,GG 1.000 .000 .000 .000 .000 .000
GG,Gg .250 .500 .000 .250 .000 .000
GG,gg .000 .000 .000 1.000 .000 .000
Gg,Gg .062 .250 .125 .250 .250 .062
Gg,gg .000 .000 .000 .250 .500 .250
gg,gg .000 .000 .000 .000 .000 1.000


.

2

Example 11.12 (Stepping Stone Model) Our final example is another example
that has been used in the study of genetics. It is called the stepping stone model.4

In this model we have an n-by-n array of squares, and each square is initially any
one of k different colors. For each step, a square is chosen at random. This square
then chooses one of its eight neighbors at random and assumes the color of that
neighbor. To avoid boundary problems, we assume that if a square S is on the
left-hand boundary, say, but not at a corner, it is adjacent to the square T on the
right-hand boundary in the same row as S, and S is also adjacent to the squares just
above and below T . A similar assumption is made about squares on the upper and
lower boundaries. (These adjacencies are much easier to understand if one imagines
making the array into a cylinder by gluing the top and bottom edge together, and
then making the cylinder into a doughnut by gluing the two circular boundaries
together.) With these adjacencies, each square in the array is adjacent to exactly
eight other squares.

A state in this Markov chain is a description of the color of each square. For this
Markov chain the number of states is kn

2
, which for even a small array of squares

is enormous. This is an example of a Markov chain that is easy to simulate but
difficult to analyze in terms of its transition matrix. The program SteppingStone
simulates this chain. We have started with a random initial configuration of two
colors with n = 20 and show the result after the process has run for some time in
Figure 11.2.

4S. Sawyer, “Results for The Stepping Stone Model for Migration in Population Genetics,”
Annals of Probability, vol. 4 (1979), pp. 699–728.
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Figure 11.1: Initial state of the stepping stone model.

Figure 11.2: State of the stepping stone model after 10,000 steps.

This is an example of an absorbing Markov chain. This type of chain will be
studied in Section 11.2. One of the theorems proved in that section, applied to
the present example, implies that with probability 1, the stones will eventually all
be the same color. By watching the program run, you can see that territories are
established and a battle develops to see which color survives. At any time the
probability that a particular color will win out is equal to the proportion of the
array of this color. You are asked to prove this in Exercise 11.2.32. 2

Exercises

1 It is raining in the Land of Oz. Determine a tree and a tree measure for the
next three days’ weather. Find w(1),w(2), and w(3) and compare with the
results obtained from P, P2, and P3.

2 In Example 11.4, let a = 0 and b = 1/2. Find P, P2, and P3. What would
Pn be? What happens to Pn as n tends to infinity? Interpret this result.

3 In Example 11.5, find P, P2, and P3. What is Pn?
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4 For Example 11.6, find the probability that the grandson of a man from Har-
vard went to Harvard.

5 In Example 11.7, find the probability that the grandson of a man from Harvard
went to Harvard.

6 In Example 11.9, assume that we start with a hybrid bred to a hybrid. Find
w(1), w(2), and w(3). What would w(n) be?

7 Find the matrices P2, P3, P4, and Pn for the Markov chain determined by

the transition matrix P =
(

1 0
0 1

)
. Do the same for the transition matrix

P =
(

0 1
1 0

)
. Interpret what happens in each of these processes.

8 A certain calculating machine uses only the digits 0 and 1. It is supposed to
transmit one of these digits through several stages. However, at every stage,
there is a probability p that the digit that enters this stage will be changed
when it leaves and a probability q = 1−p that it won’t. Form a Markov chain
to represent the process of transmission by taking as states the digits 0 and 1.
What is the matrix of transition probabilities?

9 For the Markov chain in Exercise 8, draw a tree and assign a tree measure
assuming that the process begins in state 0 and moves through two stages
of transmission. What is the probability that the machine, after two stages,
produces the digit 0 (i.e., the correct digit)? What is the probability that the
machine never changed the digit from 0? Now let p = .1. Using the program
MatrixPowers, compute the 100th power of the transition matrix. Interpret
the entries of this matrix. Repeat this with p = .2. Why do the 100th powers
appear to be the same?

10 Modify the program MatrixPowers so that it prints out the average An of
the powers Pn, for n = 1 to N . Try your program on the Land of Oz example
and compare An and Pn.

11 Assume that a man’s profession can be classified as professional, skilled la-
borer, or unskilled laborer. Assume that, of the sons of professional men,
80 percent are professional, 10 percent are skilled laborers, and 10 percent are
unskilled laborers. In the case of sons of skilled laborers, 60 percent are skilled
laborers, 20 percent are professional, and 20 percent are unskilled. Finally, in
the case of unskilled laborers, 50 percent of the sons are unskilled laborers,
and 25 percent each are in the other two categories. Assume that every man
has at least one son, and form a Markov chain by following the profession of
a randomly chosen son of a given family through several generations. Set up
the matrix of transition probabilities. Find the probability that a randomly
chosen grandson of an unskilled laborer is a professional man.

12 In Exercise 11, we assumed that every man has a son. Assume instead that
the probability that a man has at least one son is .8. Form a Markov chain
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with four states. If a man has a son, the probability that this son is in a
particular profession is the same as in Exercise 11. If there is no son, the
process moves to state four which represents families whose male line has died
out. Find the matrix of transition probabilities and find the probability that
a randomly chosen grandson of an unskilled laborer is a professional man.

13 Write a program to compute u(n) given u and P. Use this program to
compute u(10) for the Land of Oz example, with u = (0, 1, 0), and with
u = (1/3, 1/3, 1/3).

14 Using the program MatrixPowers, find P1 through P6 for Examples 11.9
and 11.10. See if you can predict the long-range probability of finding the
process in each of the states for these examples.

15 Write a program to simulate the outcomes of a Markov chain after n steps,
given the initial starting state and the transition matrix P as data (see Ex-
ample 11.12). Keep this program for use in later problems.

16 Modify the program of Exercise 15 so that it keeps track of the proportion of
times in each state in n steps. Run the modified program for different starting
states for Example 11.1 and Example 11.8. Does the initial state affect the
proportion of time spent in each of the states if n is large?

17 Prove Theorem 11.1.

18 Prove Theorem 11.2.

19 Consider the following process. We have two coins, one of which is fair, and the
other of which has heads on both sides. We give these two coins to our friend,
who chooses one of them at random (each with probability 1/2). During the
rest of the process, she uses only the coin that she chose. She now proceeds
to toss the coin many times, reporting the results. We consider this process
to consist solely of what she reports to us.

(a) Given that she reports a head on the nth toss, what is the probability
that a head is thrown on the (n+ 1)st toss?

(b) Consider this process as having two states, heads and tails. By computing
the other three transition probabilities analogous to the one in part (a),
write down a “transition matrix” for this process.

(c) Now assume that the process is in state “heads” on both the (n − 1)st
and the nth toss. Find the probability that a head comes up on the
(n+ 1)st toss.

(d) Is this process a Markov chain?

11.2 Absorbing Markov Chains

The subject of Markov chains is best studied by considering special types of Markov
chains. The first type that we shall study is called an absorbing Markov chain.
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1 2 30 4

1 1
1/2 1/2 1/2

1/2 1/2 1/2

Figure 11.3: Drunkard’s walk.

Definition 11.1 A state si of a Markov chain is called absorbing if it is impossible
to leave it (i.e., pii = 1). A Markov chain is absorbing if it has at least one absorbing
state, and if from every state it is possible to go to an absorbing state (not necessarily
in one step). 2

Definition 11.2 In an absorbing Markov chain, a state which is not absorbing is
called transient. 2

Drunkard’s Walk

Example 11.13 A man walks along a four-block stretch of Park Avenue (see Fig-
ure 11.3). If he is at corner 1, 2, or 3, then he walks to the left or right with equal
probability. He continues until he reaches corner 4, which is a bar, or corner 0,
which is his home. If he reaches either home or the bar, he stays there.

We form a Markov chain with states 0, 1, 2, 3, and 4. States 0 and 4 are
absorbing states. The transition matrix is then

P =



0 1 2 3 4
0 1 0 0 0 0
1 1/2 0 1/2 0 0
2 0 1/2 0 1/2 0
3 0 0 1/2 0 1/2
4 0 0 0 0 1

 .

The states 1, 2, and 3 are transient states, and from any of these it is possible to
reach the absorbing states 0 and 4. Hence the chain is an absorbing chain. When
a process reaches an absorbing state, we shall say that it is absorbed . 2

The most obvious question that can be asked about such a chain is: What is
the probability that the process will eventually reach an absorbing state? Other
interesting questions include: (a) What is the probability that the process will end
up in a given absorbing state? (b) On the average, how long will it take for the
process to be absorbed? (c) On the average, how many times will the process be in
each transient state? The answers to all these questions depend, in general, on the
state from which the process starts as well as the transition probabilities.
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Canonical Form

Consider an arbitrary absorbing Markov chain. Renumber the states so that the
transient states come first. If there are r absorbing states and t transient states,
the transition matrix will have the following canonical form

P =


TR. ABS.

TR. Q R

ABS. 0 I


Here I is an r-by-r indentity matrix, 0 is an r-by-t zero matrix, R is a nonzero

t-by-r matrix, and Q is an t-by-t matrix. The first t states are transient and the
last r states are absorbing.

In Section 11.1, we saw that the entry p(n)
ij of the matrix Pn is the probability of

being in the state sj after n steps, when the chain is started in state si. A standard
matrix algebra argument shows that Pn is of the form

Pn =


TR. ABS.

TR. Qn ∗

ABS. 0 I


where the asterisk ∗ stands for the t-by-r matrix in the upper right-hand corner
of Pn. (This submatrix can be written in terms of Q and R, but the expression
is complicated and is not needed at this time.) The form of Pn shows that the
entries of Qn give the probabilities for being in each of the transient states after n
steps for each possible transient starting state. For our first theorem we prove that
the probability of being in the transient states after n steps approaches zero. Thus
every entry of Qn must approach zero as n approaches infinity (i.e, Qn → 0).

In the following, if u and v are two vectors we say that u ≤ v if all components
of u are less than or equal to the corresponding components of v. Similarly, if
A and B are matrices then A ≤ B if each entry of A is less than or equal to the
corresponding entry of B.

Probability of Absorption

Theorem 11.3 In an absorbing Markov chain, the probability that the process
will be absorbed is 1 (i.e., Qn → 0 as n→∞).

Proof. From each nonabsorbing state sj it is possible to reach an absorbing state.
Let mj be the minimum number of steps required to reach an absorbing state,
starting from sj . Let pj be the probability that, starting from sj , the process will
not reach an absorbing state in mj steps. Then pj < 1. Let m be the largest of the
mj and let p be the largest of pj . The probability of not being absorbed in m steps
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is less than or equal to p, in 2n steps less than or equal to p2, etc. Since p < 1 these
probabilities tend to 0. Since the probability of not being absorbed in n steps is
monotone decreasing, these probabilities also tend to 0, hence limn→∞Qn = 0. 2

The Fundamental Matrix

Theorem 11.4 For an absorbing Markov chain the matrix I − Q has an inverse
N and N = I + Q + Q2 + · · · . The ij-entry nij of the matrix N is the expected
number of times the chain is in state sj , given that it starts in state si. The initial
state is counted if i = j.

Proof. Let (I − Q)x = 0; that is x = Qx. Then, iterating this we see that
x = Qnx. Since Qn → 0, we have Qnx → 0, so x = 0. Thus (I −Q)−1 = N
exists. Note next that

(I−Q)(I + Q + Q2 + · · ·+ Qn) = I−Qn+1 .

Thus multiplying both sides by N gives

I + Q + Q2 + · · ·+ Qn = N(I−Qn+1) .

Letting n tend to infinity we have

N = I + Q + Q2 + · · · .

Let si and sj be two transient states, and assume throughout the remainder of
the proof that i and j are fixed. Let X(k) be a random variable which equals 1
if the chain is in state sj after k steps, and equals 0 otherwise. For each k, this
random variable depends upon both i and j; we choose not to explicitly show this
dependence in the interest of clarity. We have

P (X(k) = 1) = q
(k)
ij ,

and
P (X(k) = 0) = 1− q(k)

ij ,

where q(k)
ij is the ijth entry of Qk. These equations hold for k = 0 since Q0 = I.

Therefore, since X(k) is a 0-1 random variable, E(X(k)) = q
(k)
ij .

The expected number of times the chain is in state sj in the first n steps, given
that it starts in state si, is clearly

E
(
X(0) +X(1) + · · ·+X(n)

)
= q

(0)
ij + q

(1)
ij + · · ·+ q

(n)
ij .

Letting n tend to infinity we have

E
(
X(0) +X(1) + · · ·

)
= q

(0)
ij + q

(1)
ij + · · · = nij .

2
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Definition 11.3 For an absorbing Markov chain P, the matrix N = (I−Q)−1 is
called the fundamental matrix for P. The entry nij of N gives the expected number
of times that the process is in the transient state sj if it is started in the transient
state si. 2

Example 11.14 (Example 11.13 continued) In the Drunkard’s Walk example, the
transition matrix in canonical form is

P =



1 2 3 0 4
1 0 1/2 0 1/2 0
2 1/2 0 1/2 0 0
3 0 1/2 0 0 1/2

0 0 0 0 1 0
4 0 0 0 0 1

 .

From this we see that the matrix Q is

Q =

 0 1/2 0
1/2 0 1/2
0 1/2 0

 ,

and

I−Q =

 1 −1/2 0
−1/2 1 −1/2

0 −1/2 1

 .

Computing (I−Q)−1, we find

N = (I−Q)−1 =


1 2 3

1 3/2 1 1/2
2 1 2 1
3 1/2 1 3/2

 .

From the middle row of N, we see that if we start in state 2, then the expected
number of times in states 1, 2, and 3 before being absorbed are 1, 2, and 1. 2

Time to Absorption

We now consider the question: Given that the chain starts in state si, what is the
expected number of steps before the chain is absorbed? The answer is given in the
next theorem.

Theorem 11.5 Let ti be the expected number of steps before the chain is absorbed,
given that the chain starts in state si, and let t be the column vector whose ith
entry is ti. Then

t = Nc ,

where c is a column vector all of whose entries are 1.
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Proof. If we add all the entries in the ith row of N, we will have the expected
number of times in any of the transient states for a given starting state si, that
is, the expected time required before being absorbed. Thus, ti is the sum of the
entries in the ith row of N. If we write this statement in matrix form, we obtain
the theorem. 2

Absorption Probabilities

Theorem 11.6 Let bij be the probability that an absorbing chain will be absorbed
in the absorbing state sj if it starts in the transient state si. Let B be the matrix
with entries bij . Then B is an t-by-r matrix, and

B = NR ,

where N is the fundamental matrix and R is as in the canonical form.

Proof. We have

Bij =
∑
n

∑
k

q
(n)
ik rkj

=
∑
k

∑
n

q
(n)
ik rkj

=
∑
k

nikrkj

= (NR)ij .

This completes the proof. 2

Another proof of this is given in Exercise 34.

Example 11.15 (Example 11.14 continued) In the Drunkard’s Walk example, we
found that

N =


1 2 3

1 3/2 1 1/2
2 1 2 1
3 1/2 1 3/2

 .

Hence,

t = Nc =

 3/2 1 1/2
1 2 1

1/2 1 3/2

 1
1
1


=

 3
4
3

 .
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Thus, starting in states 1, 2, and 3, the expected times to absorption are 3, 4, and
3, respectively.

From the canonical form,

R =


0 4

1 1/2 0
2 0 0
3 0 1/2

 .

Hence,

B = NR =

 3/2 1 1/2
1 2 1

1/2 1 3/2

 ·
 1/2 0

0 0
0 1/2



=


0 4

1 3/4 1/4
2 1/2 1/2
3 1/4 3/4

 .

Here the first row tells us that, starting from state 1, there is probability 3/4 of
absorption in state 0 and 1/4 of absorption in state 4. 2

Computation

The fact that we have been able to obtain these three descriptive quantities in
matrix form makes it very easy to write a computer program that determines these
quantities for a given absorbing chain matrix.

The program AbsorbingChain calculates the basic descriptive quantities of an
absorbing Markov chain.

We have run the program AbsorbingChain for the example of the drunkard’s
walk (Example 11.13) with 5 blocks. The results are as follows:

Q =


1 2 3 4

1 .00 .50 .00 .00
2 .50 .00 .50 .00
3 .00 .50 .00 .50
4 .00 .00 .50 .00

 ;

R =


0 5

1 .50 .00
2 .00 .00
3 .00 .00
4 .00 .50

 ;
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N =


1 2 3 4

1 1.60 1.20 .80 .40
2 1.20 2.40 1.60 .80
3 .80 1.60 2.40 1.20
4 .40 .80 1.20 1.60

 ;

t =


1 4.00
2 6.00
3 6.00
4 4.00

 ;

B =


0 5

1 .80 .20
2 .60 .40
3 .40 .60
4 .20 .80

 .

Note that the probability of reaching the bar before reaching home, starting
at x, is x/5 (i.e., proportional to the distance of home from the starting point).
(See Exercise 24.)

Exercises

1 In Example 11.4, for what values of a and b do we obtain an absorbing Markov
chain?

2 Show that Example 11.7 is an absorbing Markov chain.

3 Which of the genetics examples (Examples 11.9, 11.10, and 11.11) are ab-
sorbing?

4 Find the fundamental matrix N for Example 11.10.

5 For Example 11.11, verify that the following matrix is the inverse of I − Q
and hence is the fundamental matrix N.

N =


8/3 1/6 4/3 2/3
4/3 4/3 8/3 4/3
4/3 1/3 8/3 4/3
2/3 1/6 4/3 8/3

 .

Find Nc and NR. Interpret the results.

6 In the Land of Oz example (Example 11.1), change the transition matrix by
making R an absorbing state. This gives

P =


R N S

R 1 0 0
N 1/2 0 1/2
S 1/4 1/4 1/2

 .
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Find the fundamental matrix N, and also Nc and NR. Interpret the results.

7 In Example 11.8, make states 0 and 4 into absorbing states. Find the fun-
damental matrix N, and also Nc and NR, for the resulting absorbing chain.
Interpret the results.

8 In Example 11.13 (Drunkard’s Walk) of this section, assume that the proba-
bility of a step to the right is 2/3, and a step to the left is 1/3. Find N, Nc,
and NR. Compare these with the results of Example 11.15.

9 A process moves on the integers 1, 2, 3, 4, and 5. It starts at 1 and, on each
successive step, moves to an integer greater than its present position, moving
with equal probability to each of the remaining larger integers. State five is
an absorbing state. Find the expected number of steps to reach state five.

10 Using the result of Exercise 9, make a conjecture for the form of the funda-
mental matrix if the process moves as in that exercise, except that it now
moves on the integers from 1 to n. Test your conjecture for several different
values of n. Can you conjecture an estimate for the expected number of steps
to reach state n, for large n? (See Exercise 11 for a method of determining
this expected number of steps.)

*11 Let bk denote the expected number of steps to reach n from n − k, in the
process described in Exercise 9.

(a) Define b0 = 0. Show that for k > 0, we have

bk = 1 +
1
k

(
bk−1 + bk−2 + · · ·+ b0

)
.

(b) Let
f(x) = b0 + b1x+ b2x

2 + · · · .

Using the recursion in part (a), show that f(x) satisfies the differential
equation

(1− x)2y′ − (1− x)y + 1 = 0 .

(c) Show that the general solution of the differential equation in part (b) is

y =
− log(1− x)

1− x +
c

1− x ,

where c is a constant.

(d) Use part (c) to show that

bk = 1 +
1
2

+
1
3

+ · · ·+ 1
k
.

12 Three tanks fight a three-way duel. Tank A has probability 1/2 of destroying
the tank at which it fires, tank B has probability 1/3 of destroying the tank at
which it fires, and tank C has probability 1/6 of destroying the tank at which
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it fires. The tanks fire together and each tank fires at the strongest opponent
not yet destroyed. Form a Markov chain by taking as states the subsets of the
set of tanks. Find N, Nc, and NR, and interpret your results. Hint : Take
as states ABC, AC, BC, A, B, C, and none, indicating the tanks that could
survive starting in state ABC. You can omit AB because this state cannot be
reached from ABC.

13 Smith is in jail and has 3 dollars; he can get out on bail if he has 8 dollars.
A guard agrees to make a series of bets with him. If Smith bets A dollars,
he wins A dollars with probability .4 and loses A dollars with probability .6.
Find the probability that he wins 8 dollars before losing all of his money if

(a) he bets 1 dollar each time (timid strategy).

(b) he bets, each time, as much as possible but not more than necessary to
bring his fortune up to 8 dollars (bold strategy).

(c) Which strategy gives Smith the better chance of getting out of jail?

14 With the situation in Exercise 13, consider the strategy such that for i < 4,
Smith bets min(i, 4− i), and for i ≥ 4, he bets according to the bold strategy,
where i is his current fortune. Find the probability that he gets out of jail
using this strategy. How does this probability compare with that obtained for
the bold strategy?

15 Consider the game of tennis when deuce is reached. If a player wins the next
point, he has advantage. On the following point, he either wins the game or the
game returns to deuce. Assume that for any point, player A has probability
.6 of winning the point and player B has probability .4 of winning the point.

(a) Set this up as a Markov chain with state 1: A wins; 2: B wins; 3:
advantage A; 4: deuce; 5: advantage B.

(b) Find the absorption probabilities.

(c) At deuce, find the expected duration of the game and the probability
that B will win.

Exercises 16 and 17 concern the inheritance of color-blindness, which is a sex-
linked characteristic. There is a pair of genes, g and G, of which the former
tends to produce color-blindness, the latter normal vision. The G gene is
dominant. But a man has only one gene, and if this is g, he is color-blind. A
man inherits one of his mother’s two genes, while a woman inherits one gene
from each parent. Thus a man may be of type G or g, while a woman may be
type GG or Gg or gg. We will study a process of inbreeding similar to that
of Example 11.11 by constructing a Markov chain.

16 List the states of the chain. Hint : There are six. Compute the transition
probabilities. Find the fundamental matrix N, Nc, and NR.
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17 Show that in both Example 11.11 and the example just given, the probability
of absorption in a state having genes of a particular type is equal to the
proportion of genes of that type in the starting state. Show that this can
be explained by the fact that a game in which your fortune is the number of
genes of a particular type in the state of the Markov chain is a fair game.5

18 Assume that a student going to a certain four-year medical school in northern
New England has, each year, a probability q of flunking out, a probability r

of having to repeat the year, and a probability p of moving on to the next
year (in the fourth year, moving on means graduating).

(a) Form a transition matrix for this process taking as states F, 1, 2, 3, 4,
and G where F stands for flunking out and G for graduating, and the
other states represent the year of study.

(b) For the case q = .1, r = .2, and p = .7 find the time a beginning student
can expect to be in the second year. How long should this student expect
to be in medical school?

(c) Find the probability that this beginning student will graduate.

19 (E. Brown6) Mary and John are playing the following game: They have a
three-card deck marked with the numbers 1, 2, and 3 and a spinner with the
numbers 1, 2, and 3 on it. The game begins by dealing the cards out so that
the dealer gets one card and the other person gets two. A move in the game
consists of a spin of the spinner. The person having the card with the number
that comes up on the spinner hands that card to the other person. The game
ends when someone has all the cards.

(a) Set up the transition matrix for this absorbing Markov chain, where the
states correspond to the number of cards that Mary has.

(b) Find the fundamental matrix.

(c) On the average, how many moves will the game last?

(d) If Mary deals, what is the probability that John will win the game?

20 Assume that an experiment has m equally probable outcomes. Show that the
expected number of independent trials before the first occurrence of k consec-
utive occurrences of one of these outcomes is (mk − 1)/(m− 1). Hint : Form
an absorbing Markov chain with states 1, 2, . . . , k with state i representing
the length of the current run. The expected time until a run of k is 1 more
than the expected time until absorption for the chain started in state 1. It has
been found that, in the decimal expansion of pi, starting with the 24,658,601st
digit, there is a run of nine 7’s. What would your result say about the ex-
pected number of digits necessary to find such a run if the digits are produced
randomly?

5H. Gonshor, “An Application of Random Walk to a Problem in Population Genetics,” Amer-
ican Math Monthly, vol. 94 (1987), pp. 668–671

6Private communication.
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21 (Roberts7) A city is divided into 3 areas 1, 2, and 3. It is estimated that
amounts u1, u2, and u3 of pollution are emitted each day from these three
areas. A fraction qij of the pollution from region i ends up the next day at
region j. A fraction qi = 1−

∑
j qij > 0 goes into the atmosphere and escapes.

Let w(n)
i be the amount of pollution in area i after n days.

(a) Show that w(n) = u + uQ + · · ·+ uQn−1.

(b) Show that w(n) → w, and show how to compute w from u.

(c) The government wants to limit pollution levels to a prescribed level by
prescribing w. Show how to determine the levels of pollution u which
would result in a prescribed limiting value w.

22 In the Leontief economic model,8 there are n industries 1, 2, . . . , n. The
ith industry requires an amount 0 ≤ qij ≤ 1 of goods (in dollar value) from
company j to produce 1 dollar’s worth of goods. The outside demand on the
industries, in dollar value, is given by the vector d = (d1, d2, . . . , dn). Let Q
be the matrix with entries qij .

(a) Show that if the industries produce total amounts given by the vector
x = (x1, x2, . . . , xn) then the amounts of goods of each type that the
industries will need just to meet their internal demands is given by the
vector xQ.

(b) Show that in order to meet the outside demand d and the internal de-
mands the industries must produce total amounts given by a vector
x = (x1, x2, . . . , xn) which satisfies the equation x = xQ + d.

(c) Show that if Q is the Q-matrix for an absorbing Markov chain, then it
is possible to meet any outside demand d.

(d) Assume that the row sums of Q are less than or equal to 1. Give an
economic interpretation of this condition. Form a Markov chain by taking
the states to be the industries and the transition probabilites to be the qij .
Add one absorbing state 0. Define

qi0 = 1−
∑
j

qij .

Show that this chain will be absorbing if every company is either making
a profit or ultimately depends upon a profit-making company.

(e) Define xc to be the gross national product. Find an expression for the
gross national product in terms of the demand vector d and the vector
t giving the expected time to absorption.

23 A gambler plays a game in which on each play he wins one dollar with prob-
ability p and loses one dollar with probability q = 1− p. The Gambler’s Ruin

7F. Roberts, Discrete Mathematical Models (Englewood Cliffs, NJ: Prentice Hall, 1976).
8W. W. Leontief, Input-Output Economics (Oxford: Oxford University Press, 1966).
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problem is the problem of finding the probability wx of winning an amount T
before losing everything, starting with state x. Show that this problem may
be considered to be an absorbing Markov chain with states 0, 1, 2, . . . , T with
0 and T absorbing states. Suppose that a gambler has probability p = .48
of winning on each play. Suppose, in addition, that the gambler starts with
50 dollars and that T = 100 dollars. Simulate this game 100 times and see
how often the gambler is ruined. This estimates w50.

24 Show that wx of Exercise 23 satisfies the following conditions:

(a) wx = pwx+1 + qwx−1 for x = 1, 2, . . . , T − 1.

(b) w0 = 0.

(c) wT = 1.

Show that these conditions determine wx. Show that, if p = q = 1/2, then

wx =
x

T

satisfies (a), (b), and (c) and hence is the solution. If p 6= q, show that

wx =
(q/p)x − 1
(q/p)T − 1

satisfies these conditions and hence gives the probability of the gambler win-
ning.

25 Write a program to compute the probability wx of Exercise 24 for given values
of x, p, and T . Study the probability that the gambler will ruin the bank in a
game that is only slightly unfavorable, say p = .49, if the bank has significantly
more money than the gambler.

*26 We considered the two examples of the Drunkard’s Walk corresponding to the
cases n = 4 and n = 5 blocks (see Example 11.13). Verify that in these two
examples the expected time to absorption, starting at x, is equal to x(n− x).
See if you can prove that this is true in general. Hint : Show that if f(x) is
the expected time to absorption then f(0) = f(n) = 0 and

f(x) = (1/2)f(x− 1) + (1/2)f(x+ 1) + 1

for 0 < x < n. Show that if f1(x) and f2(x) are two solutions, then their
difference g(x) is a solution of the equation

g(x) = (1/2)g(x− 1) + (1/2)g(x+ 1) .

Also, g(0) = g(n) = 0. Show that it is not possible for g(x) to have a strict
maximum or a strict minimum at the point i, where 1 ≤ i ≤ n− 1. Use this
to show that g(i) = 0 for all i. This shows that there is at most one solution.
Then verify that the function f(x) = x(n− x) is a solution.
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27 Consider an absorbing Markov chain with state space S. Let f be a function
defined on S with the property that

f(i) =
∑
j∈S

pijf(j) ,

or in vector form
f = Pf .

Then f is called a harmonic function for P. If you imagine a game in which
your fortune is f(i) when you are in state i, then the harmonic condition
means that the game is fair in the sense that your expected fortune after one
step is the same as it was before the step.

(a) Show that for f harmonic
f = Pnf

for all n.

(b) Show, using (a), that for f harmonic

f = P∞f ,

where

P∞ = lim
n→∞

Pn =
(

0 B
0 I

)
.

(c) Using (b), prove that when you start in a transient state i your expected
final fortune ∑

k

bikf(k)

is equal to your starting fortune f(i). In other words, a fair game on
a finite state space remains fair to the end. (Fair games in general are
called martingales. Fair games on infinite state spaces need not remain
fair with an unlimited number of plays allowed. For example, consider
the game of Heads or Tails (see Example 1.4). Let Peter start with
1 penny and play until he has 2. Then Peter will be sure to end up
1 penny ahead.)

28 A coin is tossed repeatedly. We are interested in finding the expected number
of tosses until a particular pattern, say B = HTH, occurs for the first time.
If, for example, the outcomes of the tosses are HHTTHTH we say that the
pattern B has occurred for the first time after 7 tosses. Let TB be the time
to obtain pattern B for the first time. Li9 gives the following method for
determining E(TB).

We are in a casino and, before each toss of the coin, a gambler enters, pays
1 dollar to play, and bets that the pattern B = HTH will occur on the next

9S-Y. R. Li, “A Martingale Approach to the Study of Occurrence of Sequence Patterns in
Repeated Experiments,” Annals of Probability, vol. 8 (1980), pp. 1171–1176.
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three tosses. If H occurs, he wins 2 dollars and bets this amount that the next
outcome will be T. If he wins, he wins 4 dollars and bets this amount that
H will come up next time. If he wins, he wins 8 dollars and the pattern has
occurred. If at any time he loses, he leaves with no winnings.

Let A and B be two patterns. Let AB be the amount the gamblers win who
arrive while the pattern A occurs and bet that B will occur. For example, if
A = HT and B = HTH then AB = 2 + 4 = 6 since the first gambler bet on
H and won 2 dollars and then bet on T and won 4 dollars more. The second
gambler bet on H and lost. If A = HH and B = HTH, then AB = 2 since the
first gambler bet on H and won but then bet on T and lost and the second
gambler bet on H and won. If A = B = HTH then AB = BB = 8 + 2 = 10.

Now for each gambler coming in, the casino takes in 1 dollar. Thus the casino
takes in TB dollars. How much does it pay out? The only gamblers who go
off with any money are those who arrive during the time the pattern B occurs
and they win the amount BB. But since all the bets made are perfectly fair
bets, it seems quite intuitive that the expected amount the casino takes in
should equal the expected amount that it pays out. That is, E(TB) = BB.

Since we have seen that for B = HTH, BB = 10, the expected time to reach
the pattern HTH for the first time is 10. If we had been trying to get the
pattern B = HHH, then BB = 8 + 4 + 2 = 14 since all the last three gamblers
are paid off in this case. Thus the expected time to get the pattern HHH is 14.
To justify this argument, Li used a theorem from the theory of martingales
(fair games).

We can obtain these expectations by considering a Markov chain whose states
are the possible initial segments of the sequence HTH; these states are HTH,
HT, H, and ∅, where ∅ is the empty set. Then, for this example, the transition
matrix is 

HTH HT H ∅
HTH 1 0 0 0
HT .5 0 0 .5
H 0 .5 .5 0
∅ 0 0 .5 .5

 ,

and if B = HTH, E(TB) is the expected time to absorption for this chain
started in state ∅.
Show, using the associated Markov chain, that the values E(TB) = 10 and
E(TB) = 14 are correct for the expected time to reach the patterns HTH and
HHH, respectively.

29 We can use the gambling interpretation given in Exercise 28 to find the ex-
pected number of tosses required to reach pattern B when we start with pat-
tern A. To be a meaningful problem, we assume that pattern A does not have
pattern B as a subpattern. Let EA(TB) be the expected time to reach pattern
B starting with pattern A. We use our gambling scheme and assume that the
first k coin tosses produced the pattern A. During this time, the gamblers
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made an amount AB. The total amount the gamblers will have made when
the pattern B occurs is BB. Thus, the amount that the gamblers made after
the pattern A has occurred is BB - AB. Again by the fair game argument,
EA(TB) = BB-AB.

For example, suppose that we start with pattern A = HT and are trying to
get the pattern B = HTH. Then we saw in Exercise 28 that AB = 4 and BB
= 10 so EA(TB) = BB-AB= 6.

Verify that this gambling interpretation leads to the correct answer for all
starting states in the examples that you worked in Exercise 28.

30 Here is an elegant method due to Guibas and Odlyzko10 to obtain the expected
time to reach a pattern, say HTH, for the first time. Let f(n) be the number
of sequences of length n which do not have the pattern HTH. Let fp(n) be the
number of sequences that have the pattern for the first time after n tosses.
To each element of f(n), add the pattern HTH. Then divide the resulting
sequences into three subsets: the set where HTH occurs for the first time at
time n+ 1 (for this, the original sequence must have ended with HT); the set
where HTH occurs for the first time at time n + 2 (cannot happen for this
pattern); and the set where the sequence HTH occurs for the first time at time
n+ 3 (the original sequence ended with anything except HT). Doing this, we
have

f(n) = fp(n+ 1) + fp(n+ 3) .

Thus,
f(n)
2n

=
2fp(n+ 1)

2n+1
+

23fp(n+ 3)
2n+3

.

If T is the time that the pattern occurs for the first time, this equality states
that

P (T > n) = 2P (T = n+ 1) + 8P (T = n+ 3) .

Show that if you sum this equality over all n you obtain

∞∑
n=0

P (T > n) = 2 + 8 = 10 .

Show that for any integer-valued random variable

E(T ) =
∞∑
n=0

P (T > n) ,

and conclude that E(T ) = 10. Note that this method of proof makes very
clear that E(T ) is, in general, equal to the expected amount the casino pays
out and avoids the martingale system theorem used by Li.

10L. J. Guibas and A. M. Odlyzko, “String Overlaps, Pattern Matching, and Non-transitive
Games,” Journal of Combinatorial Theory, Series A, vol. 30 (1981), pp. 183–208.
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31 In Example 11.11, define f(i) to be the proportion of G genes in state i. Show
that f is a harmonic function (see Exercise 27). Why does this show that the
probability of being absorbed in state (GG,GG) is equal to the proportion of
G genes in the starting state? (See Exercise 17.)

32 Show that the stepping stone model (Example 11.12) is an absorbing Markov
chain. Assume that you are playing a game with red and green squares, in
which your fortune at any time is equal to the proportion of red squares at
that time. Give an argument to show that this is a fair game in the sense that
your expected winning after each step is just what it was before this step.Hint :
Show that for every possible outcome in which your fortune will decrease by
one there is another outcome of exactly the same probability where it will
increase by one.

Use this fact and the results of Exercise 27 to show that the probability that a
particular color wins out is equal to the proportion of squares that are initially
of this color.

33 Consider a random walker who moves on the integers 0, 1, . . . , N , moving one
step to the right with probability p and one step to the left with probability
q = 1 − p. If the walker ever reaches 0 or N he stays there. (This is the
Gambler’s Ruin problem of Exercise 23.) If p = q show that the function

f(i) = i

is a harmonic function (see Exercise 27), and if p 6= q then

f(i) =
(
q

p

)i
is a harmonic function. Use this and the result of Exercise 27 to show that
the probability biN of being absorbed in state N starting in state i is

biN =

{ i
N , if p = q,

( qp )i−1

( qp )N−1
, if p 6= q.

For an alternative derivation of these results see Exercise 24.

34 Complete the following alternate proof of Theorem 11.6. Let si be a tran-
sient state and sj be an absorbing state. If we compute bij in terms of the
possibilities on the outcome of the first step, then we have the equation

bij = pij +
∑
k

pikbkj ,

where the summation is carried out over all transient states sk. Write this in
matrix form, and derive from this equation the statement

B = NR .
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35 In Monte Carlo roulette (see Example 6.6), under option (c), there are six
states (S, W , L, E, P1, and P2). The reader is referred to Figure 6.2, which
contains a tree for this option. Form a Markov chain for this option, and use
the program AbsorbingChain to find the probabilities that you win, lose, or
break even for a 1 franc bet on red. Using these probabilities, find the expected
winnings for this bet. For a more general discussion of Markov chains applied
to roulette, see the article of H. Sagan referred to in Example 6.13.

36 We consider next a game called Penney-ante by its inventor W. Penney.11

There are two players; the first player picks a pattern A of H’s and T’s, and
then the second player, knowing the choice of the first player, picks a different
pattern B. We assume that neither pattern is a subpattern of the other pattern.
A coin is tossed a sequence of times, and the player whose pattern comes up
first is the winner. To analyze the game, we need to find the probability pA
that pattern A will occur before pattern B and the probability pB = 1 − pA
that pattern B occurs before pattern A. To determine these probabilities we
use the results of Exercises 28 and 29. Here you were asked to show that, the
expected time to reach a pattern B for the first time is,

E(TB) = BB ,

and, starting with pattern A, the expected time to reach pattern B is

EA(TB) = BB −AB .

(a) Show that the odds that the first player will win are given by John
Conway’s formula12:

pA
1− pA

=
pA
pB

=
BB −BA
AA−AB .

Hint : Explain why

E(TB) = E(TA or B) + pAEA(TB)

and thus
BB = E(TA or B) + pA(BB −AB) .

Interchange A and B to find a similar equation involving the pB . Finally,
note that

pA + pB = 1 .

Use these equations to solve for pA and pB .

(b) Assume that both players choose a pattern of the same length k. Show
that, if k = 2, this is a fair game, but, if k = 3, the second player has
an advantage no matter what choice the first player makes. (It has been
shown that, for k ≥ 3, if the first player chooses a1, a2, . . . , ak, then
the optimal strategy for the second player is of the form b, a1, . . . , ak−1

where b is the better of the two choices H or T.13)
11W. Penney, “Problem: Penney-Ante,” Journal of Recreational Math, vol. 2 (1969), p. 241.
12M. Gardner, “Mathematical Games,” Scientific American, vol. 10 (1974), pp. 120–125.
13Guibas and Odlyzko, op. cit.
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11.3 Ergodic Markov Chains

A second important kind of Markov chain we shall study in detail is an ergodic
Markov chain, defined as follows.

Definition 11.4 A Markov chain is called an ergodic chain if it is possible to go
from every state to every state (not necessarily in one move). 2

In many books, ergodic Markov chains are called irreducible.

Definition 11.5 A Markov chain is called a regular chain if some power of the
transition matrix has only positive elements. 2

In other words, for some n, it is possible to go from any state to any state in
exactly n steps. It is clear from this definition that every regular chain is ergodic.
On the other hand, an ergodic chain is not necessarily regular, as the following
examples show.

Example 11.16 Let the transition matrix of a Markov chain be defined by

P =
( 1 2

1 0 1
2 1 0

)
.

Then is clear that it is possible to move from any state to any state, so the chain is
ergodic. However, if n is odd, then it is not possible to move from state 0 to state
0 in n steps, and if n is even, then it is not possible to move from state 0 to state 1
in n steps, so the chain is not regular. 2

A more interesting example of an ergodic, non-regular Markov chain is provided by
the Ehrenfest urn model.

Example 11.17 Recall the Ehrenfest urn model (Example 11.8). The transition
matrix for this example is

P =



0 1 2 3 4
0 0 1 0 0 0
1 1/4 0 3/4 0 0
2 0 1/2 0 1/2 0
3 0 0 3/4 0 1/4
4 0 0 0 1 0

 .

In this example, if we start in state 0 we will, after any even number of steps, be in
either state 0, 2 or 4, and after any odd number of steps, be in states 1 or 3. Thus
this chain is ergodic but not regular. 2
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Regular Markov Chains

Any transition matrix that has no zeros determines a regular Markov chain. How-
ever, it is possible for a regular Markov chain to have a transition matrix that has
zeros. The transition matrix of the Land of Oz example of Section 11.1 has pNN = 0
but the second power P2 has no zeros, so this is a regular Markov chain.

An example of a nonregular Markov chain is an absorbing chain. For example,
let

P =
(

1 0
1/2 1/2

)
be the transition matrix of a Markov chain. Then all powers of P will have a 0 in
the upper right-hand corner.

We shall now discuss two important theorems relating to regular chains.

Theorem 11.7 Let P be the transition matrix for a regular chain. Then, as n→
∞, the powers Pn approach a limiting matrix W with all rows the same vector w.
The vector w is a strictly positive probability vector (i.e., the components are all
positive and they sum to one). 2

In the next section we give two proofs of this fundamental theorem. We give
here the basic idea of the first proof.

We want to show that the powers Pn of a regular transition matrix tend to a
matrix with all rows the same. This is the same as showing that Pn converges to
a matrix with constant columns. Now the jth column of Pn is Pny where y is a
column vector with 1 in the jth entry and 0 in the other entries. Thus we need only
prove that for any column vector y,Pny approaches a constant vector as n tend to
infinity.

Since each row of P is a probability vector, Py replaces y by averages of its
components. Here is an example: 1/2 1/4 1/4

1/3 1/3 1/3
1/3 1/2 0

 1
2
3

 =

 1/2 · 1 + 1/4 · 2 + 1/4 · 3
1/3 · 1 + 1/3 · 2 + 1/3 · 3
1/3 · 1 + 1/2 · 2 + 0 · 3

 =

 7/4
2

3/2

 .

The result of the averaging process is to make the components of Py more similar
than those of y. In particular, the maximum component decreases (from 3 to 2)
and the minimum component increases (from 1 to 3/2). Our proof will show that
as we do more and more of this averaging to get Pny, the difference between the
maximum and minimum component will tend to 0 as n → ∞. This means Pny
tends to a constant vector. The ijth entry of Pn, p(n)

ij , is the probability that the
process will be in state sj after n steps if it starts in state si. If we denote the
common row of W by w, then Theorem 11.7 states that the probability of being
in sj in the long run is approximately wj , the jth entry of w, and is independent
of the starting state.
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Example 11.18 Recall that for the Land of Oz example of Section 11.1, the sixth
power of the transition matrix P is, to three decimal places,

P6 =


R N S

R .4 .2 .4
N .4 .2 .4
S .4 .2 .4

 .

Thus, to this degree of accuracy, the probability of rain six days after a rainy day
is the same as the probability of rain six days after a nice day, or six days after
a snowy day. Theorem 11.7 predicts that, for large n, the rows of P approach a
common vector. It is interesting that this occurs so soon in our example. 2

Theorem 11.8 Let P be a regular transition matrix, let

W = lim
n→∞

Pn ,

let w be the common row of W, and let c be the column vector all of whose
components are 1. Then

(a) wP = w, and any row vector v such that vP = v is a constant multiple of w.

(b) Pc = c, and any column vector x such that Px = x is a multiple of c.

Proof. To prove part (a), we note that from Theorem 11.7,

Pn →W .

Thus,
Pn+1 = Pn ·P→WP .

But Pn+1 →W, and so W = WP, and w = wP.
Let v be any vector with vP = v. Then v = vPn, and passing to the limit,

v = vW. Let r be the sum of the components of v. Then it is easily checked that
vW = rw. So, v = rw.

To prove part (b), assume that x = Px. Then x = Pnx, and again passing to
the limit, x = Wx. Since all rows of W are the same, the components of Wx are
all equal, so x is a multiple of c. 2

Note that an immediate consequence of Theorem 11.8 is the fact that there is
only one probability vector v such that vP = v.

Fixed Vectors

Definition 11.6 A row vector w with the property wP = w is called a fixed row
vector for P. Similarly, a column vector x such that Px = x is called a fixed column
vector for P. 2
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Thus, the common row of W is the unique vector w which is both a fixed row
vector for P and a probability vector. Theorem 11.8 shows that any fixed row vector
for P is a multiple of w and any fixed column vector for P is a constant vector.

One can also state Definition 11.6 in terms of eigenvalues and eigenvectors. A
fixed row vector is a left eigenvector of the matrix P corresponding to the eigenvalue
1. A similar statement can be made about fixed column vectors.

We will now give several different methods for calculating the fixed row vector
w for a regular Markov chain.

Example 11.19 By Theorem 11.7 we can find the limiting vector w for the Land
of Oz from the fact that

w1 + w2 + w3 = 1

and

(w1 w2 w3 )

 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2

 = (w1 w2 w3 ) .

These relations lead to the following four equations in three unknowns:

w1 + w2 + w3 = 1 ,

(1/2)w1 + (1/2)w2 + (1/4)w3 = w1 ,

(1/4)w1 + (1/4)w3 = w2 ,

(1/4)w1 + (1/2)w2 + (1/2)w3 = w3 .

Our theorem guarantees that these equations have a unique solution. If the
equations are solved, we obtain the solution

w = ( .4 .2 .4 ) ,

in agreement with that predicted from P6, given in Example 11.2. 2

To calculate the fixed vector, we can assume that the value at a particular state,
say state one, is 1, and then use all but one of the linear equations from wP = w.
This set of equations will have a unique solution and we can obtain w from this
solution by dividing each of its entries by their sum to give the probability vector w.
We will now illustrate this idea for the above example.

Example 11.20 (Example 11.19 continued) We set w1 = 1, and then solve the
first and second linear equations from wP = w. We have

(1/2) + (1/2)w2 + (1/4)w3 = 1 ,

(1/4) + (1/4)w3 = w2 .

If we solve these, we obtain

(w1 w2 w3 ) = ( 1 1/2 1 ) .
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Now we divide this vector by the sum of the components, to obtain the final answer:

w = ( .4 .2 .4 ) .

This method can be easily programmed to run on a computer. 2

As mentioned above, we can also think of the fixed row vector w as a left
eigenvector of the transition matrix P. Thus, if we write I to denote the identity
matrix, then w satisfies the matrix equation

wP = wI ,

or equivalently,
w(P− I) = 0 .

Thus, w is in the left nullspace of the matrix P − I. Furthermore, Theorem 11.8
states that this left nullspace has dimension 1. Certain computer programming
languages can find nullspaces of matrices. In such languages, one can find the fixed
row probability vector for a matrix P by computing the left nullspace and then
normalizing a vector in the nullspace so the sum of its components is 1.

The program FixedVector uses one of the above methods (depending upon
the language in which it is written) to calculate the fixed row probability vector for
regular Markov chains.

So far we have always assumed that we started in a specific state. The following
theorem generalizes Theorem 11.7 to the case where the starting state is itself
determined by a probability vector.

Theorem 11.9 Let P be the transition matrix for a regular chain and v an arbi-
trary probability vector. Then

lim
n→∞

vPn = w ,

where w is the unique fixed probability vector for P.

Proof. By Theorem 11.7,
lim
n→∞

Pn = W .

Hence,
lim
n→∞

vPn = vW .

But the entries in v sum to 1, and each row of W equals w. From these statements,
it is easy to check that

vW = w .

2

If we start a Markov chain with initial probabilities given by v, then the proba-
bility vector vPn gives the probabilities of being in the various states after n steps.
Theorem 11.9 then establishes the fact that, even in this more general class of
processes, the probability of being in sj approaches wj .
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Equilibrium

We also obtain a new interpretation for w. Suppose that our starting vector picks
state si as a starting state with probability wi, for all i. Then the probability of
being in the various states after n steps is given by wPn = w, and is the same on all
steps. This method of starting provides us with a process that is called “stationary.”
The fact that w is the only probability vector for which wP = w shows that we
must have a starting probability vector of exactly the kind described to obtain a
stationary process.

Many interesting results concerning regular Markov chains depend only on the
fact that the chain has a unique fixed probability vector which is positive. This
property holds for all ergodic Markov chains.

Theorem 11.10 For an ergodic Markov chain, there is a unique probability vec-
tor w such that wP = w and w is strictly positive. Any row vector such that
vP = v is a multiple of w. Any column vector x such that Px = x is a constant
vector.

Proof. This theorem states that Theorem 11.8 is true for ergodic chains. The
result follows easily from the fact that, if P is an ergodic transition matrix, then
P̄ = (1/2)I + (1/2)P is a regular transition matrix with the same fixed vectors (see
Exercises 25–28). 2

For ergodic chains, the fixed probability vector has a slightly different inter-
pretation. The following two theorems, which we will not prove here, furnish an
interpretation for this fixed vector.

Theorem 11.11 Let P be the transition matrix for an ergodic chain. Let An be
the matrix defined by

An =
I + P + P2 + · · ·+ Pn

n+ 1
.

Then An → W, where W is a matrix all of whose rows are equal to the unique
fixed probability vector w for P. 2

If P is the transition matrix of an ergodic chain, then Theorem 11.8 states
that there is only one fixed row probability vector for P. Thus, we can use the
same techniques that were used for regular chains to solve for this fixed vector. In
particular, the program FixedVector works for ergodic chains.

To interpret Theorem 11.11, let us assume that we have an ergodic chain that
starts in state si. Let X(m) = 1 if the mth step is to state sj and 0 otherwise. Then
the average number of times in state sj in the first n steps is given by

H(n) =
X(0) +X(1) +X(2) + · · ·+X(n)

n+ 1
.

But X(m) takes on the value 1 with probability p
(m)
ij and 0 otherwise. Thus

E(X(m)) = p
(m)
ij , and the ijth entry of An gives the expected value of H(n), that
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is, the expected proportion of times in state sj in the first n steps if the chain starts
in state si.

If we call being in state sj success and any other state failure, we could ask if
a theorem analogous to the law of large numbers for independent trials holds. The
answer is yes and is given by the following theorem.

Theorem 11.12 (Law of Large Numbers for Ergodic Markov Chains) Let
H

(n)
j be the proportion of times in n steps that an ergodic chain is in state sj . Then

for any ε > 0,

P
(
|H(n)

j − wj | > ε
)
→ 0 ,

independent of the starting state si. 2

We have observed that every regular Markov chain is also an ergodic chain.
Hence, Theorems 11.11 and 11.12 apply also for regular chains. For example, this
gives us a new interpretation for the fixed vector w = (.4, .2, .4) in the Land of Oz
example. Theorem 11.11 predicts that, in the long run, it will rain 40 percent of
the time in the Land of Oz, be nice 20 percent of the time, and snow 40 percent of
the time.

Simulation

We illustrate Theorem 11.12 by writing a program to simulate the behavior of a
Markov chain. SimulateChain is such a program.

Example 11.21 In the Land of Oz, there are 525 days in a year. We have simulated
the weather for one year in the Land of Oz, using the program SimulateChain.
The results are shown in Table 11.2.

SSRNRNSSSSSSNRSNSSRNSRNSSSNSRRRNSSSNRRSSSSNRSSNSRRRRRRNSSS
SSRRRSNSNRRRRSRSRNSNSRRNRRNRSSNSRNRNSSRRSRNSSSNRSRRSSNRSNR
RNSSSSNSSNSRSRRNSSNSSRNSSRRNRRRSRNRRRNSSSNRNSRNSNRNRSSSRSS
NRSSSNSSSSSSNSSSNSNSRRNRNRRRRSRRRSSSSNRRSSSSRSRRRNRRRSSSSR
RNRRRSRSSRRRRSSRNRRRRRRNSSRNRSSSNRNSNRRRRNRRRNRSNRRNSRRSNR
RRRSSSRNRRRNSNSSSSSRRRRSRNRSSRRRRSSSRRRNRNRRRSRSRNSNSSRRRR
RNSNRNSNRRNRRRRRRSSSNRSSRSNRSSSNSNRNSNSSSNRRSRRRNRRRRNRNRS
SSNSRSNRNRRSNRRNSRSSSRNSRRSSNSRRRNRRSNRRNSSSSSNRNSSSSSSSNR
NSRRRNSSRRRNSSSNRRSRNSSRRNRRNRSNRRRRRRRRRNSNRRRRRNSRRSSSSN
SNS

State Times Fraction

R 217 .413
N 109 .208
S 199 .379

Table 11.2: Weather in the Land of Oz.
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We note that the simulation gives a proportion of times in each of the states not
too different from the long run predictions of .4, .2, and .4 assured by Theorem 11.7.
To get better results we have to simulate our chain for a longer time. We do this
for 10,000 days without printing out each day’s weather. The results are shown in
Table 11.3. We see that the results are now quite close to the theoretical values of
.4, .2, and .4.

State Times Fraction

R 4010 .401
N 1902 .19
S 4088 .409

Table 11.3: Comparison of observed and predicted frequencies for the Land of Oz.

2

Examples of Ergodic Chains

The computation of the fixed vector w may be difficult if the transition matrix
is very large. It is sometimes useful to guess the fixed vector on purely intuitive
grounds. Here is a simple example to illustrate this kind of situation.

Example 11.22 A white rat is put into the maze of Figure 11.4. There are nine
compartments with connections between the compartments as indicated. The rat
moves through the compartments at random. That is, if there are k ways to leave
a compartment, it chooses each of these with equal probability. We can represent
the travels of the rat by a Markov chain process with transition matrix given by

P =



1 2 3 4 5 6 7 8 9
1 0 1/2 0 0 0 1/2 0 0 0
2 1/3 0 1/3 0 1/3 0 0 0 0
3 0 1/2 0 1/2 0 0 0 0 0
4 0 0 1/3 0 1/3 0 0 0 1/3
5 0 1/4 0 1/4 0 1/4 0 1/4 0
6 1/3 0 0 0 1/3 0 1/3 0 0
7 0 0 0 0 0 1/2 0 1/2 0
8 0 0 0 0 1/3 0 1/3 0 1/3
9 0 0 0 1/2 0 0 0 1/2 0


.

That this chain is not regular can be seen as follows: From an odd-numbered
state the process can go only to an even-numbered state, and from an even-numbered
state it can go only to an odd number. Hence, starting in state i the process will
be alternately in even-numbered and odd-numbered states. Therefore, odd powers
of P will have 0’s for the odd-numbered entries in row 1. On the other hand, a
glance at the maze shows that it is possible to go from every state to every other
state, so that the chain is ergodic.
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1 2 3

456

7 8 9

Figure 11.4: The maze problem.

To find the fixed probability vector for this matrix, we would have to solve ten
equations in nine unknowns. However, it would seem reasonable that the times
spent in each compartment should, in the long run, be proportional to the number
of entries to each compartment. Thus, we try the vector whose jth component is
the number of entries to the jth compartment:

x = ( 2 3 2 3 4 3 2 3 2 ) .

It is easy to check that this vector is indeed a fixed vector so that the unique
probability vector is this vector normalized to have sum 1:

w = ( 1
12

1
8

1
12

1
8

1
6

1
8

1
12

1
8

1
12 ) .

2

Example 11.23 (Example 11.8 continued) We recall the Ehrenfest urn model of
Example 11.8. The transition matrix for this chain is as follows:

P =



0 1 2 3 4
0 .000 1.000 .000 .000 .000
1 .250 .000 .750 .000 .000
2 .000 .500 .000 .500 .000
3 .000 .000 .750 .000 .250
4 .000 .000 .000 1.000 .000

 .

If we run the program FixedVector for this chain, we obtain the vector

w =
( 0 1 2 3 4
.0625 .2500 .3750 .2500 .0625

)
.

By Theorem 11.12, we can interpret these values for wi as the proportion of times
the process is in each of the states in the long run. For example, the proportion of
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times in state 0 is .0625 and the proportion of times in state 1 is .375. The astute
reader will note that these numbers are the binomial distribution 1/16, 4/16, 6/16,
4/16, 1/16. We could have guessed this answer as follows: If we consider a particular
ball, it simply moves randomly back and forth between the two urns. This suggests
that the equilibrium state should be just as if we randomly distributed the four
balls in the two urns. If we did this, the probability that there would be exactly
j balls in one urn would be given by the binomial distribution b(n, p, j) with n = 4
and p = 1/2. 2

Exercises

1 Which of the following matrices are transition matrices for regular Markov
chains?

(a) P =
(
.5 .5
.5 .5

)
.

(b) P =
(
.5 .5
1 0

)
.

(c) P =

 1/3 0 2/3
0 1 0
0 1/5 4/5

.

(d) P =
(

0 1
1 0

)
.

(e) P =

 1/2 1/2 0
0 1/2 1/2

1/3 1/3 1/3

.

2 Consider the Markov chain with transition matrix

P =

 1/2 1/3 1/6
3/4 0 1/4
0 1 0

 .

(a) Show that this is a regular Markov chain.

(b) The process is started in state 1; find the probability that it is in state 3
after two steps.

(c) Find the limiting probability vector w.

3 Consider the Markov chain with general 2× 2 transition matrix

P =
(

1− a a

b 1− b

)
.

(a) Under what conditions is P absorbing?

(b) Under what conditions is P ergodic but not regular?

(c) Under what conditions is P regular?
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4 Find the fixed probability vector w for the matrices in Exercise 3 that are
ergodic.

5 Find the fixed probability vector w for each of the following regular matrices.

(a) P =
(
.75 .25
.5 .5

)
.

(b) P =
(
.9 .1
.1 .9

)
.

(c) P =

 3/4 1/4 0
0 2/3 1/3

1/4 1/4 1/2

.

6 Consider the Markov chain with transition matrix in Exercise 3, with a = b =
1. Show that this chain is ergodic but not regular. Find the fixed probability
vector and interpret it. Show that Pn does not tend to a limit, but that

An =
I + P + P2 + · · ·+ Pn

n+ 1

does.

7 Consider the Markov chain with transition matrix of Exercise 3, with a = 0
and b = 1/2. Compute directly the unique fixed probability vector, and use
your result to prove that the chain is not ergodic.

8 Show that the matrix

P =

 1 0 0
1/4 1/2 1/4
0 0 1


has more than one fixed probability vector. Find the matrix that Pn ap-
proaches as n → ∞, and verify that it is not a matrix all of whose rows are
the same.

9 Prove that, if a 3-by-3 transition matrix has the property that its column sums
are 1, then (1/3, 1/3, 1/3) is a fixed probability vector. State a similar result
for n-by-n transition matrices. Interpret these results for ergodic chains.

10 Is the Markov chain in Example 11.10 ergodic?

11 Is the Markov chain in Example 11.11 ergodic?

12 Consider Example 11.13 (Drunkard’s Walk). Assume that if the walker reaches
state 0, he turns around and returns to state 1 on the next step and, simi-
larly, if he reaches 4 he returns on the next step to state 3. Is this new chain
ergodic? Is it regular?

13 For Example 11.4 when P is ergodic, what is the proportion of people who
are told that the President will run? Interpret the fact that this proportion
is independent of the starting state.
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14 Consider an independent trials process to be a Markov chain whose states are
the possible outcomes of the individual trials. What is its fixed probability
vector? Is the chain always regular? Illustrate this for Example 11.5.

15 Show that Example 11.8 is an ergodic chain, but not a regular chain. Show
that its fixed probability vector w is a binomial distribution.

16 Show that Example 11.9 is regular and find the limiting vector.

17 Toss a fair die repeatedly. Let Sn denote the total of the outcomes through
the nth toss. Show that there is a limiting value for the proportion of the first
n values of Sn that are divisible by 7, and compute the value for this limit.
Hint : The desired limit is an equilibrium probability vector for an appropriate
seven state Markov chain.

18 Let P be the transition matrix of a regular Markov chain. Assume that there
are r states and let N(r) be the smallest integer n such that P is regular if
and only if PN(r) has no zero entries. Find a finite upper bound for N(r).
See if you can determine N(3) exactly.

*19 Define f(r) to be the smallest integer n such that for all regular Markov chains
with r states, the nth power of the transition matrix has all entries positive.
It has been shown,14 that f(r) = r2 − 2r + 2.

(a) Define the transition matrix of an r-state Markov chain as follows: For
states si, with i = 1, 2, . . . , r−2, P(i, i+1) = 1, P(r−1, r) = P(r−1, 1) =
1/2, and P(r, 1) = 1. Show that this is a regular Markov chain.

(b) For r = 3, verify that the fifth power is the first power that has no zeros.

(c) Show that, for general r, the smallest n such that Pn has all entries
positive is n = f(r).

20 A discrete time queueing system of capacity n consists of the person being
served and those waiting to be served. The queue length x is observed each
second. If 0 < x < n, then with probability p, the queue size is increased by
one by an arrival and, inependently, with probability r, it is decreased by one
because the person being served finishes service. If x = 0, only an arrival (with
probability p) is possible. If x = n, an arrival will depart without waiting for
service, and so only the departure (with probability r) of the person being
served is possible. Form a Markov chain with states given by the number of
customers in the queue. Modify the program FixedVector so that you can
input n, p, and r, and the program will construct the transition matrix and
compute the fixed vector. The quantity s = p/r is called the traffic intensity.
Describe the differences in the fixed vectors according as s < 1, s = 1, or
s > 1.

14E. Seneta, Non-Negative Matrices: An Introduction to Theory and Applications, Wiley, New
York, 1973, pp. 52-54.
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21 Write a computer program to simulate the queue in Exercise 20. Have your
program keep track of the proportion of the time that the queue length is j for
j = 0, 1, . . . , n and the average queue length. Show that the behavior of the
queue length is very different depending upon whether the traffic intensity s
has the property s < 1, s = 1, or s > 1.

22 In the queueing problem of Exercise 20, let S be the total service time required
by a customer and T the time between arrivals of the customers.

(a) Show that P (S = j) = (1 − r)j−1r and P (T = j) = (1 − p)j−1p, for
j > 0.

(b) Show that E(S) = 1/r and E(T ) = 1/p.

(c) Interpret the conditions s < 1, s = 1 and s > 1 in terms of these expected
values.

23 In Exercise 20 the service time S has a geometric distribution with E(S) =
1/r. Assume that the service time is, instead, a constant time of t seconds.
Modify your computer program of Exercise 21 so that it simulates a constant
time service distribution. Compare the average queue length for the two
types of distributions when they have the same expected service time (i.e.,
take t = 1/r). Which distribution leads to the longer queues on the average?

24 A certain experiment is believed to be described by a two-state Markov chain
with the transition matrix P, where

P =
(
.5 .5
p 1− p

)
and the parameter p is not known. When the experiment is performed many
times, the chain ends in state one approximately 20 percent of the time and in
state two approximately 80 percent of the time. Compute a sensible estimate
for the unknown parameter p and explain how you found it.

25 Prove that, in an r-state ergodic chain, it is possible to go from any state to
any other state in at most r − 1 steps.

26 Let P be the transition matrix of an r-state ergodic chain. Prove that, if the
diagonal entries pii are positive, then the chain is regular.

27 Prove that if P is the transition matrix of an ergodic chain, then (1/2)(I+P)
is the transition matrix of a regular chain. Hint : Use Exercise 26.

28 Prove that P and (1/2)(I + P) have the same fixed vectors.

29 In his book, Wahrscheinlichkeitsrechnung und Statistik,15 A. Engle proposes
an algorithm for finding the fixed vector for an ergodic Markov chain when
the transition probabilities are rational numbers. Here is his algorithm: For

15A. Engle, Wahrscheinlichkeitsrechnung und Statistik, vol. 2 (Stuttgart: Klett Verlag, 1976).
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(4 2 4)
(5 2 3)
(8 2 4)
(7 3 4)
(8 4 4)
(8 3 5)
(8 4 8)
(10 4 6)
(12 4 8)
(12 5 7)
(12 6 8)
(13 5 8)
(16 6 8)
(15 6 9)
(16 6 12)
(17 7 10)
(20 8 12)
(20 8 12) .

Table 11.4: Distribution of chips.

each state i, let ai be the least common multiple of the denominators of the
non-zero entries in the ith row. Engle describes his algorithm in terms of mov-
ing chips around on the states—indeed, for small examples, he recommends
implementing the algorithm this way. Start by putting ai chips on state i for
all i. Then, at each state, redistribute the ai chips, sending aipij to state j.
The number of chips at state i after this redistribution need not be a multiple
of ai. For each state i, add just enough chips to bring the number of chips at
state i up to a multiple of ai. Then redistribute the chips in the same manner.
This process will eventually reach a point where the number of chips at each
state, after the redistribution, is the same as before redistribution. At this
point, we have found a fixed vector. Here is an example:

P =


1 2 3

1 1/2 1/4 1/4
2 1/2 0 1/2
3 1/2 1/4 1/4

 .

We start with a = (4, 2, 4). The chips after successive redistributions are
shown in Table 11.4.

We find that a = (20, 8, 12) is a fixed vector.

(a) Write a computer program to implement this algorithm.

(b) Prove that the algorithm will stop. Hint : Let b be a vector with integer
components that is a fixed vector for P and such that each coordinate of
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the starting vector a is less than or equal to the corresponding component
of b. Show that, in the iteration, the components of the vectors are
always increasing, and always less than or equal to the corresponding
component of b.

30 (Coffman, Kaduta, and Shepp16) A computing center keeps information on a
tape in positions of unit length. During each time unit there is one request to
occupy a unit of tape. When this arrives the first free unit is used. Also, during
each second, each of the units that are occupied is vacated with probability p.
Simulate this process, starting with an empty tape. Estimate the expected
number of sites occupied for a given value of p. If p is small, can you choose the
tape long enough so that there is a small probability that a new job will have
to be turned away (i.e., that all the sites are occupied)? Form a Markov chain
with states the number of sites occupied. Modify the program FixedVector
to compute the fixed vector. Use this to check your conjecture by simulation.

*31 (Alternate proof of Theorem 11.8) Let P be the transition matrix of an ergodic
Markov chain. Let x be any column vector such that Px = x. Let M be the
maximum value of the components of x. Assume that xi = M . Show that if
pij > 0 then xj = M . Use this to prove that x must be a constant vector.

32 Let P be the transition matrix of an ergodic Markov chain. Let w be a fixed
probability vector (i.e., w is a row vector with wP = w). Show that if wi = 0
and pji > 0 then wj = 0. Use this to show that the fixed probability vector
for an ergodic chain cannot have any 0 entries.

33 Find a Markov chain that is neither absorbing or ergodic.

11.4 Fundamental Limit Theorem for Regular
Chains

The fundamental limit theorem for regular Markov chains states that if P is a
regular transition matrix then

lim
n→∞

Pn = W ,

where W is a matrix with each row equal to the unique fixed probability row vector
w for P. In this section we shall give two very different proofs of this theorem.

Our first proof is carried out by showing that, for any column vector y, Pny
tends to a constant vector. As indicated in Section 11.3, this will show that Pn

converges to a matrix with constant columns or, equivalently, to a matrix with all
rows the same.

The following lemma says that if an r-by-r transition matrix has no zero entries,
and y is any column vector with r entries, then the vector Py has entries which are
“closer together” than the entries are in y.

16E. G. Coffman, J. T. Kaduta, and L. A. Shepp, “On the Asymptotic Optimality of First-
Storage Allocation,” IEEE Trans. Software Engineering, vol. II (1985), pp. 235-239.
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Lemma 11.1 Let P be an r-by-r transition matrix with no zero entries. Let d be
the smallest entry of the matrix. Let y be a column vector with r components, the
largest of which is M0 and the smallest m0. Let M1 and m1 be the largest and
smallest component, respectively, of the vector Py. Then

M1 −m1 ≤ (1− 2d)(M0 −m0) .

Proof. In the discussion following Theorem11.7, it was noted that each entry in the
vector Py is a weighted average of the entries in y. The largest weighted average
that could be obtained in the present case would occur if all but one of the entries
of y have value M0 and one entry has value m0, and this one small entry is weighted
by the smallest possible weight, namely d. In this case, the weighted average would
equal

dm0 + (1− d)M0 .

Similarly, the smallest possible weighted average equals

dM0 + (1− d)m0 .

Thus,

M1 −m1 ≤
(
dm0 + (1− d)M0

)
−
(
dM0 + (1− d)m0

)
= (1− 2d)(M0 −m0) .

This completes the proof of the lemma. 2

We turn now to the proof of the fundamental limit theorem for regular Markov
chains.

Theorem 11.13 (Fundamental Limit Theorem for Regular Chains) If P is
the transition matrix for a regular Markov chain, then

lim
n→∞

Pn = W ,

where W is matrix with all rows equal. Furthermore, all entries in W are strictly
positive.

Proof. We prove this theorem for the special case that P has no 0 entries. The
extension to the general case is indicated in Exercise 5. Let y be any r-component
column vector, where r is the number of states of the chain. We assume that
r > 1, since otherwise the theorem is trivial. Let Mn and mn be, respectively,
the maximum and minimum components of the vector Pn y. The vector Pny is
obtained from the vector Pn−1y by multiplying on the left by the matrix P. Hence
each component of Pny is an average of the components of Pn−1y. Thus

M0 ≥M1 ≥M2 ≥ · · ·
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and
m0 ≤ m1 ≤ m2 ≤ · · · .

Each sequence is monotone and bounded:

m0 ≤ mn ≤Mn ≤M0 .

Hence, each of these sequences will have a limit as n tends to infinity.
Let M be the limit of Mn and m the limit of mn. We know that m ≤ M . We

shall prove that M −m = 0. This will be the case if Mn −mn tends to 0. Let d
be the smallest element of P. Since all entries of P are strictly positive, we have
d > 0. By our lemma

Mn −mn ≤ (1− 2d)(Mn−1 −mn−1) .

From this we see that

Mn −mn ≤ (1− 2d)n(M0 −m0) .

Since r ≥ 2, we must have d ≤ 1/2, so 0 ≤ 1 − 2d < 1, so the difference Mn −mn

tends to 0 as n tends to infinity. Since every component of Pny lies between
mn and Mn, each component must approach the same number u = M = m. This
shows that

lim
n→∞

Pny = u ,

where u is a column vector all of whose components equal u.
Now let y be the vector with jth component equal to 1 and all other components

equal to 0. Then Pny is the jth column of Pn. Doing this for each j proves that the
columns of Pn approach constant column vectors. That is, the rows of Pn approach
a common row vector w, or,

lim
n→∞

Pn = W .

It remains to show that all entries in W are strictly positive. As before, let y
be the vector with jth component equal to 1 and all other components equal to 0.
Then Py is the jth column of P, and this column has all entries strictly positive.
The minimum component of the vector Py was defined to be m1, hence m1 > 0.
Since m1 ≤ m, we have m > 0. Note finally that this value of m is just the jth
component of w, so all components of w are strictly positive. 2

Doeblin’s Proof

We give now a very different proof of the main part of the fundamental limit theorem
for regular Markov chains. This proof was first given by Doeblin,17 a brilliant young
mathematician who was killed in his twenties in the Second World War.

17W. Doeblin, “Exposé de la Théorie des Chaines Simple Constantes de Markov à un Nombre
Fini d’Etats,” Rev. Mach. de l’Union Interbalkanique, vol. 2 (1937), pp. 77–105.
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Theorem 11.14 Let P be the transition matrix for a regular Markov chain with
fixed vector w. Then for any initial probability vector u, uPn → w as n→∞.

Proof. Let X0, X1, . . . be a Markov chain with transition matrix P started in
state si. Let Y0, Y1, . . . be a Markov chain with transition probability P started
with initial probabilities given by w. The X and Y processes are run independently
of each other.

We consider also a third Markov chain P∗ which consists of watching both the
X and Y processes. The states for P∗ are pairs (si, sj). The transition probabilities
are given by

P∗[(i, j), (k, l)] = P(i, j) ·P(k, l) .

Since P is regular there is an N such that PN (i, j) > 0 for all i and j. Thus for the
P∗ chain it is also possible to go from any state (si, sj) to any other state (sk, sl)
in at most N steps. That is P∗ is also a regular Markov chain.

We know that a regular Markov chain will reach any state in a finite time. Let T
be the first time the the chain P∗ is in a state of the form (sk, sk). In other words,
T is the first time that the X and the Y processes are in the same state. Then we
have shown that

P [T > n]→ 0 as n→∞ .

If we watch the X and Y processes after the first time they are in the same state
we would not predict any difference in their long range behavior. Since this will
happen no matter how we started these two processes, it seems clear that the long
range behaviour should not depend upon the starting state. We now show that this
is true.

We first note that if n ≥ T , then since X and Y are both in the same state at
time T ,

P (Xn = j | n ≥ T ) = P (Yn = j | n ≥ T ) .

If we multiply both sides of this equation by P (n ≥ T ), we obtain

P (Xn = j, n ≥ T ) = P (Yn = j, n ≥ T ) . (11.1)

We know that for all n,
P (Yn = j) = wj .

But
P (Yn = j) = P (Yn = j, n ≥ T ) + P (Yn = j, n < T ) ,

and the second summand on the right-hand side of this equation goes to 0 as n goes
to ∞, since P (n < T ) goes to 0 as n goes to ∞. So,

P (Yn = j, n ≥ T )→ wj ,

as n goes to ∞. From Equation 11.1, we see that

P (Xn = j, n ≥ T )→ wj ,
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as n goes to∞. But by similar reasoning to that used above, the difference between
this last expression and P (Xn = j) goes to 0 as n goes to ∞. Therefore,

P (Xn = j)→ wj ,

as n goes to ∞. This completes the proof. 2

In the above proof, we have said nothing about the rate at which the distributions
of the Xn’s approach the fixed distribution w. In fact, it can be shown that18

r∑
j=1

| P (Xn = j)− wj |≤ 2P (T > n) .

The left-hand side of this inequality can be viewed as the distance between the
distribution of the Markov chain after n steps, starting in state si, and the limiting
distribution w.

Exercises

1 Define P and y by

P =
(
.5 .5
.25 .75

)
, y =

(
1
0

)
.

Compute Py, P2y, and P4y and show that the results are approaching a
constant vector. What is this vector?

2 Let P be a regular r × r transition matrix and y any r-component column
vector. Show that the value of the limiting constant vector for Pny is wy.

3 Let

P =

 1 0 0
.25 0 .75
0 0 1


be a transition matrix of a Markov chain. Find two fixed vectors of P that are
linearly independent. Does this show that the Markov chain is not regular?

4 Describe the set of all fixed column vectors for the chain given in Exercise 3.

5 The theorem that Pn →W was proved only for the case that P has no zero
entries. Fill in the details of the following extension to the case that P is
regular. Since P is regular, for some N,PN has no zeros. Thus, the proof
given shows that MnN −mnN approaches 0 as n tends to infinity. However,
the difference Mn −mn can never increase. (Why?) Hence, if we know that
the differences obtained by looking at every Nth time tend to 0, then the
entire sequence must also tend to 0.

6 Let P be a regular transition matrix and let w be the unique non-zero fixed
vector of P. Show that no entry of w is 0.

18T. Lindvall, Lectures on the Coupling Method (New York: Wiley 1992).
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7 Here is a trick to try on your friends. Shuffle a deck of cards and deal them
out one at a time. Count the face cards each as ten. Ask your friend to look
at one of the first ten cards; if this card is a six, she is to look at the card that
turns up six cards later; if this card is a three, she is to look at the card that
turns up three cards later, and so forth. Eventually she will reach a point
where she is to look at a card that turns up x cards later but there are not
x cards left. You then tell her the last card that she looked at even though
you did not know her starting point. You tell her you do this by watching
her, and she cannot disguise the times that she looks at the cards. In fact you
just do the same procedure and, even though you do not start at the same
point as she does, you will most likely end at the same point. Why?

8 Write a program to play the game in Exercise 7.

11.5 Mean First Passage Time for Ergodic Chains

In this section we consider two closely related descriptive quantities of interest for
ergodic chains: the mean time to return to a state and the mean time to go from
one state to another state.

Let P be the transition matrix of an ergodic chain with states s1, s2, . . . , sr. Let
w = (w1, w2, . . . , wr) be the unique probability vector such that wP = w. Then,
by the Law of Large Numbers for Markov chains, in the long run the process will
spend a fraction wj of the time in state sj . Thus, if we start in any state, the chain
will eventually reach state sj ; in fact, it will be in state sj infinitely often.

Another way to see this is the following: Form a new Markov chain by making
sj an absorbing state, that is, define pjj = 1. If we start at any state other than sj ,
this new process will behave exactly like the original chain up to the first time that
state sj is reached. Since the original chain was an ergodic chain, it was possible
to reach sj from any other state. Thus the new chain is an absorbing chain with a
single absorbing state sj that will eventually be reached. So if we start the original
chain at a state si with i 6= j, we will eventually reach the state sj .

Let N be the fundamental matrix for the new chain. The entries of N give the
expected number of times in each state before absorption. In terms of the original
chain, these quantities give the expected number of times in each of the states before
reaching state sj for the first time. The ith component of the vector Nc gives the
expected number of steps before absorption in the new chain, starting in state si.
In terms of the old chain, this is the expected number of steps required to reach
state sj for the first time starting at state si.

Mean First Passage Time

Definition 11.7 If an ergodic Markov chain is started in state si, the expected
number of steps to reach state sj for the first time is called the mean first passage
time from si to sj . It is denoted by mij . By convention mii = 0. 2
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456

7 8 9

Figure 11.5: The maze problem.

Example 11.24 Let us return to the maze example (Example 11.22). We shall
make this ergodic chain into an absorbing chain by making state 5 an absorbing
state. For example, we might assume that food is placed in the center of the maze
and once the rat finds the food, he stays to enjoy it (see Figure 11.5).

The new transition matrix in canonical form is

P =



1 2 3 4 6 7 8 9 5
1 0 1/2 0 0 1/2 0 0 0 0
2 1/3 0 1/3 0 0 0 0 0 1/3
3 0 1/2 0 1/2 0 0 0 0 0
4 0 0 1/3 0 0 1/3 0 1/3 1/3
6 1/3 0 0 0 0 0 0 0 1/3
7 0 0 0 0 1/2 0 1/2 0 0
8 0 0 0 0 0 1/3 0 1/3 1/3
9 0 0 0 1/2 0 0 1/2 0 0

5 0 0 0 0 0 0 0 0 1


.

If we compute the fundamental matrix N, we obtain

N =
1
8



14 9 4 3 9 4 3 2
6 14 6 4 4 2 2 2
4 9 14 9 3 2 3 4
2 4 6 14 2 2 4 6
6 4 2 2 14 6 4 2
4 3 2 3 9 14 9 4
2 2 2 4 4 6 14 6
2 3 4 9 3 4 9 14


.

The expected time to absorption for different starting states is given by the vec-
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tor Nc, where

Nc =



6
5
6
5
5
6
5
6


.

We see that, starting from compartment 1, it will take on the average six steps
to reach food. It is clear from symmetry that we should get the same answer for
starting at state 3, 7, or 9. It is also clear that it should take one more step,
starting at one of these states, than it would starting at 2, 4, 6, or 8. Some of the
results obtained from N are not so obvious. For instance, we note that the expected
number of times in the starting state is 14/8 regardless of the state in which we
start. 2

Mean Recurrence Time

A quantity that is closely related to the mean first passage time is the mean recur-
rence time, defined as follows. Assume that we start in state si; consider the length
of time before we return to si for the first time. It is clear that we must return,
since we either stay at si the first step or go to some other state sj , and from any
other state sj , we will eventually reach si because the chain is ergodic.

Definition 11.8 If an ergodic Markov chain is started in state si, the expected
number of steps to return to si for the first time is the mean recurrence time for si.
It is denoted by ri. 2

We need to develop some basic properties of the mean first passage time. Con-
sider the mean first passage time from si to sj ; assume that i 6= j. This may be
computed as follows: take the expected number of steps required given the outcome
of the first step, multiply by the probability that this outcome occurs, and add. If
the first step is to sj , the expected number of steps required is 1; if it is to some
other state sk, the expected number of steps required is mkj plus 1 for the step
already taken. Thus,

mij = pij +
∑
k 6=j

pik(mkj + 1) ,

or, since
∑
k pik = 1,

mij = 1 +
∑
k 6=j

pikmjk . (11.2)

Similarly, starting in si, it must take at least one step to return. Considering
all possible first steps gives us

ri =
∑
k

pik(mki + 1) (11.3)
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= 1 +
∑
k

pikmki . (11.4)

Mean First Passage Matrix and Mean Recurrence Matrix

Let us now define two matrices M and D. The ijth entry mij of M is the mean first
passage time to go from si to sj if i 6= j; the diagonal entries are 0. The matrix M
is called the mean first passage matrix. The matrix D is the matrix with all entries
0 except the diagonal entries dii = ri. The matrix D is called the mean recurrence
matrix. Let C be an r × r matrix with all entries 1. Using Equation 11.2 for the
case i 6= j and Equation 11.4 for the case i = j, we obtain the matrix equation

M = PM + C−D , (11.5)

or
(I−P)M = C−D . (11.6)

Equation 11.6 with mii = 0 implies Equations 11.2 and 11.4. We are now in a
position to prove our first basic theorem.

Theorem 11.15 For an ergodic Markov chain, the mean recurrence time for state
si is ri = 1/wi, where wi is the ith component of the fixed probability vector for
the transition matrix.

Proof. Multiplying both sides of Equation 11.6 by w and using the fact that

w(I−P) = 0

gives
wC−wD = 0 .

Here wC is a row vector with all entries 1 and wD is a row vector with ith entry
wiri. Thus

(1, 1, . . . , 1) = (w1r1, w2r2, . . . , wnrn)

and
ri = 1/wi ,

as was to be proved. 2

Corollary 11.1 For an ergodic Markov chain, the components of the fixed proba-
bility vector w are strictly positive.

Proof. We know that the values of ri are finite and so wi = 1/ri cannot be 0. 2
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Example 11.25 In Example 11.22 we found the fixed probability vector for the
maze example to be

w = ( 1
12

1
8

1
12

1
8

1
6

1
8

1
12

1
8

1
12 ) .

Hence, the mean recurrence times are given by the reciprocals of these probabilities.
That is,

r = ( 12 8 12 8 6 8 12 8 12 ) .

2

Returning to the Land of Oz, we found that the weather in the Land of Oz could
be represented by a Markov chain with states rain, nice, and snow. In Section 11.3
we found that the limiting vector was w = (2/5, 1/5, 2/5). From this we see that
the mean number of days between rainy days is 5/2, between nice days is 5, and
between snowy days is 5/2.

Fundamental Matrix

We shall now develop a fundamental matrix for ergodic chains that will play a role
similar to that of the fundamental matrix N = (I−Q)−1 for absorbing chains. As
was the case with absorbing chains, the fundamental matrix can be used to find
a number of interesting quantities involving ergodic chains. Using this matrix, we
will give a method for calculating the mean first passage times for ergodic chains
that is easier to use than the method given above. In addition, we will state (but
not prove) the Central Limit Theorem for Markov Chains, the statement of which
uses the fundamental matrix.

We begin by considering the case that P is the transition matrix of a regular
Markov chain. Since there are no absorbing states, we might be tempted to try
Z = (I−P)−1 for a fundamental matrix. But I−P does not have an inverse. To
see this, recall that a matrix R has an inverse if and only if Rx = 0 implies x = 0.
But since Pc = c we have (I−P)c = 0, and so I−P does not have an inverse.

We recall that if we have an absorbing Markov chain, and Q is the restriction
of the transition matrix to the set of transient states, then the fundamental matrix
N could be written as

N = I + Q + Q2 + · · · .

The reason that this power series converges is that Qn → 0, so this series acts like
a convergent geometric series.

This idea might prompt one to try to find a similar series for regular chains.
Since we know that Pn →W, we might consider the series

I + (P−W) + (P2 −W) + · · · . (11.7)

We now use special properties of P and W to rewrite this series. The special
properties are: 1) PW = W, and 2) Wk = W for all positive integers k. These
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facts are easy to verify, and are left as an exercise (see Exercise 22). Using these
facts, we see that

(P−W)n =
n∑
i=0

(−1)i
(
n

i

)
Pn−iWi

= Pn +
n∑
i=1

(−1)i
(
n

i

)
Wi

= Pn +
n∑
i=1

(−1)i
(
n

i

)
W

= Pn +

(
n∑
i=1

(−1)i
(
n

i

))
W .

If we expand the expression (1 − 1)n, using the Binomial Theorem, we obtain the
expression in parenthesis above, except that we have an extra term (which equals
1). Since (1− 1)n = 0, we see that the above expression equals -1. So we have

(P−W)n = Pn −W ,

for all n ≥ 1.
We can now rewrite the series in 11.7 as

I + (P−W) + (P−W)2 + · · · .

Since the nth term in this series is equal to Pn −W, the nth term goes to 0 as n
goes to infinity. This is sufficient to show that this series converges, and sums to
the inverse of the matrix I −P + W. We call this inverse the fundamental matrix
associated with the chain, and we denote it by Z.

In the case that the chain is ergodic, but not regular, it is not true that Pn →W
as n→∞. Nevertheless, the matrix I−P + W still has an inverse, as we will now
show.

Proposition 11.1 Let P be the transition matrix of an ergodic chain, and let W
be the matrix all of whose rows are the fixed probability row vector for P. Then
the matrix

I−P + W

has an inverse.

Proof. Let x be a column vector such that

(I−P + W)x = 0 .

To prove the proposition, it is sufficient to show that x must be the zero vector.
Multiplying this equation by w and using the fact that w(I− P) = 0 and wW = w,
we have

w(I−P + W)x = wx = 0 .
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Therefore,
(I−P)x = 0 .

But this means that x = Px is a fixed column vector for P. By Theorem 11.10,
this can only happen if x is a constant vector. Since wx = 0, and w has strictly
positive entries, we see that x = 0. This completes the proof. 2

As in the regular case, we will call the inverse of the matrix I − P + W the
fundamental matrix for the ergodic chain with transition matrix P, and we will use
Z to denote this fundamental matrix.

Example 11.26 Let P be the transition matrix for the weather in the Land of Oz.
Then

I−P + W =

 1 0 0
0 1 0
0 0 1

−
 1/2 1/4 1/4

1/2 0 1/2
1/4 1/4 1/2

+

 2/5 1/5 2/5
2/5 1/5 2/5
2/5 1/5 2/5


=

 9/10 −1/20 3/20
−1/10 6/5 −1/10
3/20 −1/20 9/10

 ,

so

Z = (I−P + W)−1 =

 86/75 1/25 −14/75
2/25 21/25 2/25
−14/75 1/25 86/75

 .

2

Using the Fundamental Matrix to Calculate the Mean First
Passage Matrix

We shall show how one can obtain the mean first passage matrix M from the
fundamental matrix Z for an ergodic Markov chain. Before stating the theorem
which gives the first passage times, we need a few facts about Z.

Lemma 11.2 Let Z = (I − P + W)−1, and let c be a column vector of all 1’s.
Then

Zc = c ,

wZ = w ,

and
Z(I−P) = I−W .

Proof. Since Pc = c and Wc = c,

c = (I−P + W)c .

If we multiply both sides of this equation on the left by Z, we obtain

Zc = c .
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Similarly, since wP = w and wW = w,

w = w(I−P + W) .

If we multiply both sides of this equation on the right by Z, we obtain

wZ = w .

Finally, we have

(I−P + W)(I−W) = I−W−P + W + W−W

= I−P .

Multiplying on the left by Z, we obtain

I−W = Z(I−P) .

This completes the proof. 2

The following theorem shows how one can obtain the mean first passage times
from the fundamental matrix.

Theorem 11.16 The mean first passage matrix M for an ergodic chain is deter-
mined from the fundamental matrix Z and the fixed row probability vector w by

mij =
zjj − zij
wj

.

Proof. We showed in Equation 11.6 that

(I−P)M = C−D .

Thus,
Z(I−P)M = ZC− ZD ,

and from Lemma 11.2,
Z(I−P)M = C− ZD .

Again using Lemma 11.2, we have

M−WM = C− ZD

or
M = C− ZD + WM .

From this equation, we see that

mij = 1− zijrj + (wM)j . (11.8)

But mjj = 0, and so
0 = 1− zjjrj + (wM)j ,
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or
(wM)j = zjjrj − 1 . (11.9)

From Equations 11.8 and 11.9, we have

mij = (zjj − zij) · rj .

Since rj = 1/wj ,

mij =
zjj − zij
wj

.

2

Example 11.27 (Example 11.26 continued) In the Land of Oz example, we find
that

Z = (I−P + W)−1 =

 86/75 1/25 −14/75
2/25 21/25 2/25
−14/75 1/25 86/75

 .

We have also seen that w = (2/5, 1/5, 2/5). So, for example,

m12 =
z22 − z12

w2

=
21/25− 1/25

1/5
= 4 ,

by Theorem 11.16. Carrying out the calculations for the other entries of M, we
obtain

M =

 0 4 10/3
8/3 0 8/3
10/3 4 0

 .

2

Computation

The program ErgodicChain calculates the fundamental matrix, the fixed vector,
the mean recurrence matrix D, and the mean first passage matrix M. We have run
the program for the Ehrenfest urn model (Example 11.8). We obtain:

P =



0 1 2 3 4
0 .0000 1.0000 .0000 .0000 .0000
1 .2500 .0000 .7500 .0000 .0000
2 .0000 .5000 .0000 .5000 .0000
3 .0000 .0000 .7500 .0000 .2500
4 .0000 .0000 .0000 1.0000 .0000

 ;

w =
( 0 1 2 3 4
.0625 .2500 .3750 .2500 .0625

)
;
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r =
( 0 1 2 3 4

16.0000 4.0000 2.6667 4.0000 16.0000
)

;

M =



0 1 2 3 4
0 .0000 1.0000 2.6667 6.3333 21.3333
1 15.0000 .0000 1.6667 5.3333 20.3333
2 18.6667 3.6667 .0000 3.6667 18.6667
3 20.3333 5.3333 1.6667 .0000 15.0000
4 21.3333 6.3333 2.6667 1.0000 .0000

 .

From the mean first passage matrix, we see that the mean time to go from 0 balls
in urn 1 to 2 balls in urn 1 is 2.6667 steps while the mean time to go from 2 balls in
urn 1 to 0 balls in urn 1 is 18.6667. This reflects the fact that the model exhibits a
central tendency. Of course, the physicist is interested in the case of a large number
of molecules, or balls, and so we should consider this example for n so large that
we cannot compute it even with a computer.

Ehrenfest Model

Example 11.28 (Example 11.23 continued) Let us consider the Ehrenfest model
(see Example 11.8) for gas diffusion for the general case of 2n balls. Every second,
one of the 2n balls is chosen at random and moved from the urn it was in to the
other urn. If there are i balls in the first urn, then with probability i/2n we take
one of them out and put it in the second urn, and with probability (2n− i)/2n we
take a ball from the second urn and put it in the first urn. At each second we let
the number i of balls in the first urn be the state of the system. Then from state i
we can pass only to state i− 1 and i+ 1, and the transition probabilities are given
by

pij =


i

2n , if j = i− 1,
1− i

2n , if j = i+ 1,
0 , otherwise.

This defines the transition matrix of an ergodic, non-regular Markov chain (see
Exercise 15). Here the physicist is interested in long-term predictions about the
state occupied. In Example 11.23, we gave an intuitive reason for expecting that
the fixed vector w is the binomial distribution with parameters 2n and 1/2. It is
easy to check that this is correct. So,

wi =

(
2n
i

)
22n

.

Thus the mean recurrence time for state i is

ri =
22n(
2n
i

) .
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Figure 11.6: Ehrenfest simulation.

Consider in particular the central term i = n. We have seen that this term is
approximately 1/

√
πn. Thus we may approximate rn by

√
πn.

This model was used to explain the concept of reversibility in physical systems.
Assume that we let our system run until it is in equilibrium. At this point, a movie
is made, showing the system’s progress. The movie is then shown to you, and you
are asked to tell if the movie was shown in the forward or the reverse direction.
It would seem that there should always be a tendency to move toward an equal
proportion of balls so that the correct order of time should be the one with the
most transitions from i to i− 1 if i > n and i to i+ 1 if i < n.

In Figure 11.6 we show the results of simulating the Ehrenfest urn model for
the case of n = 50 and 1000 time units, using the program EhrenfestUrn. The
top graph shows these results graphed in the order in which they occurred and the
bottom graph shows the same results but with time reversed. There is no apparent
difference.
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We note that if we had not started in equilibrium, the two graphs would typically
look quite different. 2

Reversibility

If the Ehrenfest model is started in equilibrium, then the process has no apparent
time direction. The reason for this is that this process has a property called re-
versibility. Define Xn to be the number of balls in the left urn at step n. We can
calculate, for a general ergodic chain, the reverse transition probability:

P (Xn−1 = j|Xn = i) =
P (Xn−1 = j,Xn = i)

P (Xn = i)

=
P (Xn−1 = j)P (Xn = i|Xn−1 = j)

P (Xn = i)

=
P (Xn−1 = j)pji
P (Xn = i)

.

In general, this will depend upon n, since P (Xn = j) and also P (Xn−1 = j)
change with n. However, if we start with the vector w or wait until equilibrium is
reached, this will not be the case. Then we can define

p∗ij =
wjpji
wi

as a transition matrix for the process watched with time reversed.
Let us calculate a typical transition probability for the reverse chain P∗ = {p∗ij}

in the Ehrenfest model. For example,

p∗i,i−1 =
wi−1pi−1,i

wi
=

(
2n
i−1

)
22n

× 2n− i+ 1
2n

× 22n(
2n
i

)
=

(2n)!
(i− 1)! (2n− i+ 1)!

× (2n− i+ 1)i! (2n− i)!
2n(2n)!

=
i

2n
= pi,i−1 .

Similar calculations for the other transition probabilities show that P∗ = P.
When this occurs the process is called reversible. Clearly, an ergodic chain is re-
versible if, and only if, for every pair of states si and sj , wipij = wjpji. In particular,
for the Ehrenfest model this means that wipi,i−1 = wi−1pi−1,i. Thus, in equilib-
rium, the pairs (i, i− 1) and (i− 1, i) should occur with the same frequency. While
many of the Markov chains that occur in applications are reversible, this is a very
strong condition. In Exercise 12 you are asked to find an example of a Markov chain
which is not reversible.

The Central Limit Theorem for Markov Chains

Suppose that we have an ergodic Markov chain with states s1, s2, . . . , sk. It is
natural to consider the distribution of the random variables S(n)

j , which denotes
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the number of times that the chain is in state sj in the first n steps. The jth
component wj of the fixed probability row vector w is the proportion of times that
the chain is in state sj in the long run. Hence, it is reasonable to conjecture that
the expected value of the random variable S(n)

j , as n → ∞, is asymptotic to nwj ,
and it is easy to show that this is the case (see Exercise 23).

It is also natural to ask whether there is a limiting distribution of the random
variables S(n)

j . The answer is yes, and in fact, this limiting distribution is the normal
distribution. As in the case of independent trials, one must normalize these random
variables. Thus, we must subtract from S

(n)
j its expected value, and then divide by

its standard deviation. In both cases, we will use the asymptotic values of these
quantities, rather than the values themselves. Thus, in the first case, we will use
the value nwj . It is not so clear what we should use in the second case. It turns
out that the quantity

σ2
j = 2wjzjj − wj − w2

j (11.10)

represents the asymptotic variance. Armed with these ideas, we can state the
following theorem.

Theorem 11.17 (Central Limit Theorem for Markov Chains) For an er-
godic chain, for any real numbers r < s, we have

P

(
r <

S
(n)
j − nwj√

nσ2
j

< s

)
→ 1√

2π

∫ s

r

e−x
2/2 dx ,

as n → ∞, for any choice of starting state, where σ2
j is the quantity defined in

Equation 11.10. 2

Historical Remarks

Markov chains were introduced by Andrĕi Andreevich Markov (1856–1922) and
were named in his honor. He was a talented undergraduate who received a gold
medal for his undergraduate thesis at St. Petersburg University. Besides being
an active research mathematician and teacher, he was also active in politics and
patricipated in the liberal movement in Russia at the beginning of the twentieth
century. In 1913, when the government celebrated the 300th anniversary of the
House of Romanov family, Markov organized a counter-celebration of the 200th
anniversary of Bernoulli’s discovery of the Law of Large Numbers.

Markov was led to develop Markov chains as a natural extension of sequences
of independent random variables. In his first paper, in 1906, he proved that for a
Markov chain with positive transition probabilities and numerical states the average
of the outcomes converges to the expected value of the limiting distribution (the
fixed vector). In a later paper he proved the central limit theorem for such chains.
Writing about Markov, A. P. Youschkevitch remarks:

Markov arrived at his chains starting from the internal needs of prob-
ability theory, and he never wrote about their applications to physical
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science. For him the only real examples of the chains were literary texts,
where the two states denoted the vowels and consonants.19

In a paper written in 1913,20 Markov chose a sequence of 20,000 letters from
Pushkin’s Eugene Onegin to see if this sequence can be approximately considered
a simple chain. He obtained the Markov chain with transition matrix

( vowel consonant
vowel .128 .872
consonant .663 .337

)
.

The fixed vector for this chain is (.432, .568), indicating that we should expect
about 43.2 percent vowels and 56.8 percent consonants in the novel, which was
borne out by the actual count.

Claude Shannon considered an interesting extension of this idea in his book The
Mathematical Theory of Communication,21 in which he developed the information-
theoretic concept of entropy. Shannon considers a series of Markov chain approxi-
mations to English prose. He does this first by chains in which the states are letters
and then by chains in which the states are words. For example, for the case of
words he presents first a simulation where the words are chosen independently but
with appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
OF TO EXPERT GRAY COME TO FURNISHES THE LINE MES-
SAGE HAD BE THESE.

He then notes the increased resemblence to ordinary English text when the words
are chosen as a Markov chain, in which case he obtains

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRI-
TER THAT THE CHARACTER OF THIS POINT IS THEREFORE
ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF
WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

A simulation like the last one is carried out by opening a book and choosing the
first word, say it is the. Then the book is read until the word the appears again
and the word after this is chosen as the second word, which turned out to be head.
The book is then read until the word head appears again and the next word, and,
is chosen, and so on.

Other early examples of the use of Markov chains occurred in Galton’s study of
the problem of survival of family names in 1889 and in the Markov chain introduced

19See Dictionary of Scientific Biography, ed. C. C. Gillespie (New York: Scribner’s Sons, 1970),
pp. 124–130.

20A. A. Markov, “An Example of Statistical Analysis of the Text of Eugene Onegin Illustrat-
ing the Association of Trials into a Chain,” Bulletin de l’Acadamie Imperiale des Sciences de
St. Petersburg, ser. 6, vol. 7 (1913), pp. 153–162.

21C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (Urbana: Univ.
of Illinois Press, 1964).
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by P. and T. Ehrenfest in 1907 for diffusion. Poincaré in 1912 dicussed card shuffling
in terms of an ergodic Markov chain defined on a permutation group. Brownian
motion, a continuous time version of random walk, was introducted in 1900–1901
by L. Bachelier in his study of the stock market, and in 1905–1907 in the works of
A. Einstein and M. Smoluchowsky in their study of physical processes.

One of the first systematic studies of finite Markov chains was carried out by
M. Frechet.22 The treatment of Markov chains in terms of the two fundamental
matrices that we have used was developed by Kemeny and Snell 23 to avoid the use of
eigenvalues that one of these authors found too complex. The fundamental matrix N
occurred also in the work of J. L. Doob and others in studying the connection
between Markov processes and classical potential theory. The fundamental matrix Z
for ergodic chains appeared first in the work of Frechet, who used it to find the
limiting variance for the central limit theorem for Markov chains.

Exercises

1 Consider the Markov chain with transition matrix

P =
(

1/2 1/2
1/4 3/4

)
.

Find the fundamental matrix Z for this chain. Compute the mean first passage
matrix using Z.

2 A study of the strengths of Ivy League football teams shows that if a school
has a strong team one year it is equally likely to have a strong team or average
team next year; if it has an average team, half the time it is average next year,
and if it changes it is just as likely to become strong as weak; if it is weak it
has 2/3 probability of remaining so and 1/3 of becoming average.

(a) A school has a strong team. On the average, how long will it be before
it has another strong team?

(b) A school has a weak team; how long (on the average) must the alumni
wait for a strong team?

3 Consider Example 11.4 with a = .5 and b = .75. Assume that the President
says that he or she will run. Find the expected length of time before the first
time the answer is passed on incorrectly.

4 Find the mean recurrence time for each state of Example 11.4 for a = .5 and
b = .75. Do the same for general a and b.

5 A die is rolled repeatedly. Show by the results of this section that the mean
time between occurrences of a given number is 6.

22M. Frechet, “Théorie des événements en chaine dans le cas d’un nombre fini d’états possible,”
in Recherches théoriques Modernes sur le calcul des probabilités, vol. 2 (Paris, 1938).

23J. G. Kemeny and J. L. Snell, Finite Markov Chains.
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2 43

65

1

Figure 11.7: Maze for Exercise 7.

6 For the Land of Oz example (Example 11.1), make rain into an absorbing
state and find the fundamental matrix N. Interpret the results obtained from
this chain in terms of the original chain.

7 A rat runs through the maze shown in Figure 11.7. At each step it leaves the
room it is in by choosing at random one of the doors out of the room.

(a) Give the transition matrix P for this Markov chain.

(b) Show that it is an ergodic chain but not a regular chain.

(c) Find the fixed vector.

(d) Find the expected number of steps before reaching Room 5 for the first
time, starting in Room 1.

8 Modify the program ErgodicChain so that you can compute the basic quan-
tities for the queueing example of Exercise 11.3.20. Interpret the mean recur-
rence time for state 0.

9 Consider a random walk on a circle of circumference n. The walker takes
one unit step clockwise with probability p and one unit counterclockwise with
probability q = 1 − p. Modify the program ErgodicChain to allow you to
input n and p and compute the basic quantities for this chain.

(a) For which values of n is this chain regular? ergodic?

(b) What is the limiting vector w?

(c) Find the mean first passage matrix for n = 5 and p = .5. Verify that
mij = d(n− d), where d is the clockwise distance from i to j.

10 Two players match pennies and have between them a total of 5 pennies. If at
any time one player has all of the pennies, to keep the game going, he gives
one back to the other player and the game will continue. Show that this game
can be formulated as an ergodic chain. Study this chain using the program
ErgodicChain.
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11 Calculate the reverse transition matrix for the Land of Oz example (Exam-
ple 11.1). Is this chain reversible?

12 Give an example of a three-state ergodic Markov chain that is not reversible.

13 Let P be the transition matrix of an ergodic Markov chain and P∗ the reverse
transition matrix. Show that they have the same fixed probability vector w.

14 If P is a reversible Markov chain, is it necessarily true that the mean time
to go from state i to state j is equal to the mean time to go from state j to
state i? Hint : Try the Land of Oz example (Example 11.1).

15 Show that any ergodic Markov chain with a symmetric transition matrix (i.e.,
pij = pji) is reversible.

16 (Crowell24) Let P be the transition matrix of an ergodic Markov chain. Show
that

(I + P + · · ·+ Pn−1)(I−P + W) = I−Pn + nW ,

and from this show that

I + P + · · ·+ Pn−1

n
→W ,

as n→∞.

17 An ergodic Markov chain is started in equilibrium (i.e., with initial probability
vector w). The mean time until the next occurrence of state si is m̄i =∑
k wkmki + wiri. Show that m̄i = zii/wi, by using the facts that wZ = w

and mki = (zii − zki)/wi.

18 A perpetual craps game goes on at Charley’s. Jones comes into Charley’s on
an evening when there have already been 100 plays. He plans to play until the
next time that snake eyes (a pair of ones) are rolled. Jones wonders how many
times he will play. On the one hand he realizes that the average time between
snake eyes is 36 so he should play about 18 times as he is equally likely to
have come in on either side of the halfway point between occurrences of snake
eyes. On the other hand, the dice have no memory, and so it would seem
that he would have to play for 36 more times no matter what the previous
outcomes have been. Which, if either, of Jones’s arguments do you believe?
Using the result of Exercise 17, calculate the expected to reach snake eyes, in
equilibrium, and see if this resolves the apparent paradox. If you are still in
doubt, simulate the experiment to decide which argument is correct. Can you
give an intuitive argument which explains this result?

19 Show that, for an ergodic Markov chain (see Theorem 11.16),∑
j

mijwj =
∑
j

zjj − 1 = K .

24Private communication.
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Figure 11.8: Simplified Monopoly.

The second expression above shows that the number K is independent of
i. The number K is called Kemeny’s constant. A prize was offered to the
first person to give an intuitively plausible reason for the above sum to be
independent of i. (See also Exercise 24.)

20 Consider a game played as follows: You are given a regular Markov chain
with transition matrix P, fixed probability vector w, and a payoff function f
which assigns to each state si an amount fi which may be positive or negative.
Assume that wf = 0. You watch this Markov chain as it evolves, and every
time you are in state si you receive an amount fi. Show that your expected
winning after n steps can be represented by a column vector g(n), with

g(n) = (I + P + P2 + · · ·+ Pn)f.

Show that as n→∞, g(n) → g with g = Zf.

21 A highly simplified game of “Monopoly” is played on a board with four squares
as shown in Figure 11.8. You start at GO. You roll a die and move clockwise
around the board a number of squares equal to the number that turns up on
the die. You collect or pay an amount indicated on the square on which you
land. You then roll the die again and move around the board in the same
manner from your last position. Using the result of Exercise 20, estimate
the amount you should expect to win in the long run playing this version of
Monopoly.

22 Show that if P is the transition matrix of a regular Markov chain, and W is
the matrix each of whose rows is the fixed probability vector corresponding
to P, then PW = W, and Wk = W for all positive integers k.

23 Assume that an ergodic Markov chain has states s1, s2, . . . , sk. Let S(n)
j denote

the number of times that the chain is in state sj in the first n steps. Let w
denote the fixed probability row vector for this chain. Show that, regardless
of the starting state, the expected value of S(n)

j , divided by n, tends to wj as

n→∞. Hint : If the chain starts in state si, then the expected value of S(n)
j

is given by the expression
n∑
h=0

p
(h)
ij .
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24 Peter Doyle25 has suggested the following interpretation for Kemeny’s con-
stant (see Exercise 19). We are given an ergodic chain and do not know the
starting state. However, we would like to start watching it at a time when
it can be considered to be in equilibrium (i.e., as if we had started with the
fixed vector w or as if we had waited a long time). However, we don’t know
the starting state and we don’t want to wait a long time. Peter says to choose
a state according to the fixed vector w. That is, choose state j with proba-
bility wj using a spinner, for example. Then wait until the time T that this
state occurs for the first time. We consider T as our starting time and observe
the chain from this time on. Of course the probability that we start in state j
is wj , so we are starting in equilibrium. Kemeny’s constant is the expected
value of T , and it is independent of the way in which the chain was started.
Should Peter have been given the prize?

25Private communication.


